Abstract

Using a ray matrix method, we analyze theoretically how the r and θ polarizations affect the resonator stability condition of two laser heads with or without thermal birefringence compensation. The resonator stability condition is analyzed graphically for a plane–parallel and a concave–concave resonator. The maximum range of stable region is found for both the short and the long cavity. The characteristics of the laser output power are confirmed experimentally in association with the resonator stability condition. The laser output power of 776 W is obtained with the optical-to-optical efficiency of 45% for a plane–parallel resonator with a short crystal separation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akiyama, M. Sasaki, H. Yuasa, N. Nishida, “Efficient high-power diode-pumped Nd:YAG rod laser,” in Conference on Lasers and Electro-Optics/Pacific Rim, Vol. 1 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 558–559.
  2. K. Yasui, “Efficient and stable operation of a high-brightness cw 500-W Nd:YAG rod laser,” Appl. Opt. 35, 2566–2569 (1996).
    [CrossRef] [PubMed]
  3. K. P. Driedger, R. M. Iffländer, H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24, 665–674 (1988).
    [CrossRef]
  4. S. Lee, M. Yun, H. S. Kim, B. H. Cha, S. Suk, “Output power and polarization characteristics for a diode side-pumped Nd:YAG laser with a diffusive optical pump cavity,” Appl. Opt. 41, 1082–1088 (2002).
    [CrossRef] [PubMed]
  5. S. Lee, S. K. Kim, M. Yun, H. S. Kim, B. H. Cha, H. J. Moon, “Design and fabrication of a diode side-pumped efficient Nd:YAG laser with a diffusive optical cavity for the laser output power of 500 W,” Appl. Opt. 41, 1089–1094 (2002).
    [CrossRef] [PubMed]
  6. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer, Berlin, 1996), Chap. 7, 398–402.
  7. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).
  8. L. N. Somes, A. A. Tarasov, V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd+3 laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
    [CrossRef]

2002 (2)

1996 (1)

1988 (1)

K. P. Driedger, R. M. Iffländer, H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24, 665–674 (1988).
[CrossRef]

1980 (1)

L. N. Somes, A. A. Tarasov, V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd+3 laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

Akiyama, Y.

Y. Akiyama, M. Sasaki, H. Yuasa, N. Nishida, “Efficient high-power diode-pumped Nd:YAG rod laser,” in Conference on Lasers and Electro-Optics/Pacific Rim, Vol. 1 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 558–559.

Cha, B. H.

Driedger, K. P.

K. P. Driedger, R. M. Iffländer, H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24, 665–674 (1988).
[CrossRef]

Iffländer, R. M.

K. P. Driedger, R. M. Iffländer, H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24, 665–674 (1988).
[CrossRef]

Kim, H. S.

Kim, S. K.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer, Berlin, 1996), Chap. 7, 398–402.

Lee, S.

Mezenov, V.

V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).

Moon, H. J.

Nishida, N.

Y. Akiyama, M. Sasaki, H. Yuasa, N. Nishida, “Efficient high-power diode-pumped Nd:YAG rod laser,” in Conference on Lasers and Electro-Optics/Pacific Rim, Vol. 1 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 558–559.

Sasaki, M.

Y. Akiyama, M. Sasaki, H. Yuasa, N. Nishida, “Efficient high-power diode-pumped Nd:YAG rod laser,” in Conference on Lasers and Electro-Optics/Pacific Rim, Vol. 1 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 558–559.

Shashkin, V. V.

L. N. Somes, A. A. Tarasov, V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd+3 laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

Somes, L. N.

L. N. Somes, A. A. Tarasov, V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd+3 laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

Soms, L. N.

V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).

Stepanov, A. I.

V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).

Suk, S.

Tarasov, A. A.

L. N. Somes, A. A. Tarasov, V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd+3 laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

Weber, H.

K. P. Driedger, R. M. Iffländer, H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24, 665–674 (1988).
[CrossRef]

Yasui, K.

Yuasa, H.

Y. Akiyama, M. Sasaki, H. Yuasa, N. Nishida, “Efficient high-power diode-pumped Nd:YAG rod laser,” in Conference on Lasers and Electro-Optics/Pacific Rim, Vol. 1 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 558–559.

Yun, M.

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

K. P. Driedger, R. M. Iffländer, H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24, 665–674 (1988).
[CrossRef]

Sov. J. Quantum Electron. (1)

L. N. Somes, A. A. Tarasov, V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd+3 laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

Other (3)

Y. Akiyama, M. Sasaki, H. Yuasa, N. Nishida, “Efficient high-power diode-pumped Nd:YAG rod laser,” in Conference on Lasers and Electro-Optics/Pacific Rim, Vol. 1 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 558–559.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer, Berlin, 1996), Chap. 7, 398–402.

V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Thermal birefringence compensated resonator scheme of a plane–parallel resonator, including two crystal rods and a 90° rotator in between; (b) schematic diagram of the laser pump head.

Fig. 2
Fig. 2

Resonator stability condition (a) depicted schematically in the gi* plane, and (b) calculated with and without thermal birefringence compensation for a plane–parallel resonator with the short crystal rod separation of 18 cm and depicted in terms of a mirror distance (d 1) and total pump power.

Fig. 3
Fig. 3

Resonator stability condition of a plane–parallel resonator calculated with the ray-matrix method for the long crystal rod separation (d 2) of 39.2 cm.

Fig. 4
Fig. 4

Resonator stability condition of a concave–concave resonator calculated with the crystal rod separation of d 2 = 18 cm and both mirror radii of 200 cm.

Fig. 5
Fig. 5

Laser output power of a plane–parallel resonator measured for different mirror distances (d 1) with an output coupler reflectance of 65% and a crystal rod separation of d 2 = 18 cm.

Fig. 6
Fig. 6

Dependence of laser output power on total pump power measured with a short mirror distance of d 1 = d 2/2 = 9 cm for a plane–parallel and a concave–concave resonator. Reflectance of an output coupler is 65% for a plane–parallel and 70% for a concave–concave resonator.

Fig. 7
Fig. 7

Laser output power of a plane-parallel resonator measured with/without a 90° rotator at d 2 = 24.2 cm and d 1 = 12.1 cm.

Fig. 8
Fig. 8

Laser output power and M2 beam quality factor of a plane-parallel resonator measured with a long crystal rod separation of d 2 = 39.2 cm and a mirror distance of d 1 = 19.6 cm.

Fig. 9
Fig. 9

Measured laser beam profiles depending on the stability conditions of the plane-parallel resonator. Beam profiles are measured at the total pump power of (a) 1151, (b) 1317, (c) 1572, and (d) 1746 W with d 2 = 39.2 and d 1 = 19.6 cm.

Fig. 10
Fig. 10

Dependence of the M2 beam quality factor on the mirror distance (d 1) measured for plane–parallel and concave–concave resonators with the input pump power of 1572 W and d 2 = 18 cm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Mr,θ=cos Γr,θLn0Γr,θ-1 sin Γr,θL-n0Γr,θ sin Γr,θLcos Γr,θL,
n2r,2θ=n04ΔTR212n0dndT+n02αCr,θ,
ΔT=A4πL112dndT+n03αCr,θ1fr,θ
=5.66×104r7.07×104θR2L1fr,θ.
Mp-p=ABCD
=d1MrldRlMθd1d1MθldRl×Mrd1,
d2=ldRl=1l011dR/nR011l01
=12l+dR/nR01.
Ms=d1MrldRlMθd1
=g1*L*g1*g2*-1L*g2*.
-1<A+D2<1.
Mc-c=Rfd1MrldRlMθd1Rocd1×MθldRlMrd1,

Metrics