Abstract

Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92° as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection (Marcel Dekker, New York, 1983).
  2. F. Kubick, C. T. Redding, “Electro-optic beam scanner,” U.S. patent4,706,094 (10November1987).
  3. P. J. Talbot, “PLZT based electro-optic phased array optical scanner,” U.S. patent5,668,657 (16September1997).
  4. M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
    [CrossRef]
  5. W. Goltsos, M. Holtz, “Agile beam steering using binary optics microlens array,” Opt. Eng. 29, 1392–1397 (1990).
    [CrossRef]
  6. N. A. Riza, “MOST: multiplexed optical scanner technology,” in LEOS 2000: Proceedings of the Lasers and Electro-Optics Society Annual Meeting, A. Weiner, ed. (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. 2, pp. 828–829.
  7. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).
  8. N. A. Riza, “Photonically controlled ultrasonic arrays: scenarios and systems,” in IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 2, pp. 1545–1550.
  9. G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
    [CrossRef]
  10. M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
    [CrossRef]
  11. S. L. Dobson, P.-C. Sun, Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36, 4744–4748 (1997).
    [CrossRef] [PubMed]
  12. Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength-multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
    [CrossRef]
  13. Product no. 5306BK-660, Thermo RGL, 705 St. Paul St., Rochester, N.Y. 14605 (2000).
  14. Part no. 9001K39, McMaster Carr Supply Company, P.O. Box 54960, Los Angeles, Calif. 90054-0960.
  15. Product no. TSL-210-155, Santec Photonics Laboratories, Komaki, Japan (1998); http://www.santec.com .
  16. F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.
  17. Product no. NYW-50-001, ADC Altitun, P.O. Box 911, SE-175 29 Järfälla, Stockholm, Sweden (2000).
  18. Product no. MTX-TEML, Multiplex Inc., Corporate Headquarters, 115 Corporate Blvd., South Plainfield, N.J. 07080 (2000).
  19. N. A. Riza, Z. Yaqoob, “Sub-microsecond speed variable optical attenuator using acousto-optics,” IEEE Photon. Technol. Lett. 13, 693–695 (2001).
    [CrossRef]
  20. M. J. Mughal, N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett., 14, 510–512 (2002).
    [CrossRef]
  21. M. J. Mughal, N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
    [CrossRef]
  22. N. A. Riza, Z. Yaqoob, “Agile optical beam scanner using wavelength and space manipulations,” in Algorithms and Systems for Optical Information Processing V, B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 262–271 (2001).
    [CrossRef]
  23. N. A. Riza, Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in LEOS 1999: Proceedings of the Lasers and Electro-Optics Society Annual Meeting, L. Goldberg, ed. (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 184–185.
  24. N. A. Riza, Z. Yaqoob, “High-speed fiber-optic probe for dynamic blood analysis measurements,” in Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics, A. V. Priezzhev, P. A. Oberg, eds., Proc. SPIE4163, 18–23 (2000).
    [CrossRef]
  25. Z. Yaqoob, N. A. Riza, “High-speed scanning probes for internal and external cavity biomedical optics,” in Biomedical Topical Meetings, Vol. 71 in OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 381–383.
  26. Z. Yaqoob, N. A. Riza, “High-speed wavelength-multiplexed fiber-optic sensors for biomedicine,” poster paper presented at IEEE Sensors 2002, Orlando, Fla., 12–14 June 2002, p1.36.
  27. G. J. Tearney, M. Shishkov, B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27, 412–414 (2002).
    [CrossRef]

2002 (3)

M. J. Mughal, N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett., 14, 510–512 (2002).
[CrossRef]

M. J. Mughal, N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

G. J. Tearney, M. Shishkov, B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27, 412–414 (2002).
[CrossRef]

2001 (2)

Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength-multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
[CrossRef]

N. A. Riza, Z. Yaqoob, “Sub-microsecond speed variable optical attenuator using acousto-optics,” IEEE Photon. Technol. Lett. 13, 693–695 (2001).
[CrossRef]

1997 (2)

M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
[CrossRef]

S. L. Dobson, P.-C. Sun, Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36, 4744–4748 (1997).
[CrossRef] [PubMed]

1990 (1)

W. Goltsos, M. Holtz, “Agile beam steering using binary optics microlens array,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

1988 (1)

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

1984 (1)

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[CrossRef]

Alibert, G.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Andrews, A. P.

M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
[CrossRef]

Bouma, B. E.

Chiou, A. E.

M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
[CrossRef]

Dadkhah, M. S.

M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
[CrossRef]

Delorme, F.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Dobson, S. L.

Fainman, Y.

Goltsos, W.

W. Goltsos, M. Holtz, “Agile beam steering using binary optics microlens array,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Gottlieb, M.

M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection (Marcel Dekker, New York, 1983).

Holtz, M.

W. Goltsos, M. Holtz, “Agile beam steering using binary optics microlens array,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Huang, Y.

N. A. Riza, Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in LEOS 1999: Proceedings of the Lasers and Electro-Optics Society Annual Meeting, L. Goldberg, ed. (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 184–185.

Hutley, M. C.

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

Ireland, C. L. M.

M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection (Marcel Dekker, New York, 1983).

Khoshnevisan, M.

M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
[CrossRef]

Kubick, F.

F. Kubick, C. T. Redding, “Electro-optic beam scanner,” U.S. patent4,706,094 (10November1987).

Ley, J. M.

M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection (Marcel Dekker, New York, 1983).

Loewen, E. G.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

Marcy, H. O.

M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
[CrossRef]

Molesini, G.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[CrossRef]

Motamedi, M. E.

M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
[CrossRef]

Mughal, M. J.

M. J. Mughal, N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

M. J. Mughal, N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett., 14, 510–512 (2002).
[CrossRef]

Nakajima, H.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Ougier, C.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Park, S.

M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
[CrossRef]

Pedrini, G.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[CrossRef]

Poggi, P.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[CrossRef]

Popov, E.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

Quercioli, F.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[CrossRef]

Redding, C. T.

F. Kubick, C. T. Redding, “Electro-optic beam scanner,” U.S. patent4,706,094 (10November1987).

Riza, N. A.

M. J. Mughal, N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

M. J. Mughal, N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett., 14, 510–512 (2002).
[CrossRef]

Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength-multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
[CrossRef]

N. A. Riza, Z. Yaqoob, “Sub-microsecond speed variable optical attenuator using acousto-optics,” IEEE Photon. Technol. Lett. 13, 693–695 (2001).
[CrossRef]

Z. Yaqoob, N. A. Riza, “High-speed wavelength-multiplexed fiber-optic sensors for biomedicine,” poster paper presented at IEEE Sensors 2002, Orlando, Fla., 12–14 June 2002, p1.36.

N. A. Riza, “Photonically controlled ultrasonic arrays: scenarios and systems,” in IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 2, pp. 1545–1550.

N. A. Riza, Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in LEOS 1999: Proceedings of the Lasers and Electro-Optics Society Annual Meeting, L. Goldberg, ed. (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 184–185.

N. A. Riza, Z. Yaqoob, “Agile optical beam scanner using wavelength and space manipulations,” in Algorithms and Systems for Optical Information Processing V, B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 262–271 (2001).
[CrossRef]

N. A. Riza, Z. Yaqoob, “High-speed fiber-optic probe for dynamic blood analysis measurements,” in Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics, A. V. Priezzhev, P. A. Oberg, eds., Proc. SPIE4163, 18–23 (2000).
[CrossRef]

Z. Yaqoob, N. A. Riza, “High-speed scanning probes for internal and external cavity biomedical optics,” in Biomedical Topical Meetings, Vol. 71 in OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 381–383.

N. A. Riza, “MOST: multiplexed optical scanner technology,” in LEOS 2000: Proceedings of the Lasers and Electro-Optics Society Annual Meeting, A. Weiner, ed. (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. 2, pp. 828–829.

Rizvi, A. A.

Shishkov, M.

Slempkes, S.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Stevens, R. F.

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

Sun, P.-C.

Talbot, P. J.

P. J. Talbot, “PLZT based electro-optic phased array optical scanner,” U.S. patent5,668,657 (16September1997).

Tearney, G. J.

Wang, A.

M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
[CrossRef]

Yaqoob, Z.

Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength-multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
[CrossRef]

N. A. Riza, Z. Yaqoob, “Sub-microsecond speed variable optical attenuator using acousto-optics,” IEEE Photon. Technol. Lett. 13, 693–695 (2001).
[CrossRef]

Z. Yaqoob, N. A. Riza, “High-speed wavelength-multiplexed fiber-optic sensors for biomedicine,” poster paper presented at IEEE Sensors 2002, Orlando, Fla., 12–14 June 2002, p1.36.

N. A. Riza, Z. Yaqoob, “Agile optical beam scanner using wavelength and space manipulations,” in Algorithms and Systems for Optical Information Processing V, B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 262–271 (2001).
[CrossRef]

Z. Yaqoob, N. A. Riza, “High-speed scanning probes for internal and external cavity biomedical optics,” in Biomedical Topical Meetings, Vol. 71 in OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 381–383.

N. A. Riza, Z. Yaqoob, “High-speed fiber-optic probe for dynamic blood analysis measurements,” in Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics, A. V. Priezzhev, P. A. Oberg, eds., Proc. SPIE4163, 18–23 (2000).
[CrossRef]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (3)

N. A. Riza, Z. Yaqoob, “Sub-microsecond speed variable optical attenuator using acousto-optics,” IEEE Photon. Technol. Lett. 13, 693–695 (2001).
[CrossRef]

M. J. Mughal, N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett., 14, 510–512 (2002).
[CrossRef]

M. J. Mughal, N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

J. Phys. E (1)

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

Opt. Commun. (1)

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[CrossRef]

Opt. Eng. (2)

M. E. Motamedi, S. Park, A. Wang, M. S. Dadkhah, A. P. Andrews, H. O. Marcy, M. Khoshnevisan, A. E. Chiou, “Development of a micro-electro-mechanical optical scanner,” Opt. Eng. 36, 1346–1353 (1997).
[CrossRef]

W. Goltsos, M. Holtz, “Agile beam steering using binary optics microlens array,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Opt. Lett. (1)

Other (17)

M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection (Marcel Dekker, New York, 1983).

F. Kubick, C. T. Redding, “Electro-optic beam scanner,” U.S. patent4,706,094 (10November1987).

P. J. Talbot, “PLZT based electro-optic phased array optical scanner,” U.S. patent5,668,657 (16September1997).

N. A. Riza, “MOST: multiplexed optical scanner technology,” in LEOS 2000: Proceedings of the Lasers and Electro-Optics Society Annual Meeting, A. Weiner, ed. (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. 2, pp. 828–829.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

N. A. Riza, “Photonically controlled ultrasonic arrays: scenarios and systems,” in IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 2, pp. 1545–1550.

Product no. 5306BK-660, Thermo RGL, 705 St. Paul St., Rochester, N.Y. 14605 (2000).

Part no. 9001K39, McMaster Carr Supply Company, P.O. Box 54960, Los Angeles, Calif. 90054-0960.

Product no. TSL-210-155, Santec Photonics Laboratories, Komaki, Japan (1998); http://www.santec.com .

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Product no. NYW-50-001, ADC Altitun, P.O. Box 911, SE-175 29 Järfälla, Stockholm, Sweden (2000).

Product no. MTX-TEML, Multiplex Inc., Corporate Headquarters, 115 Corporate Blvd., South Plainfield, N.J. 07080 (2000).

N. A. Riza, Z. Yaqoob, “Agile optical beam scanner using wavelength and space manipulations,” in Algorithms and Systems for Optical Information Processing V, B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 262–271 (2001).
[CrossRef]

N. A. Riza, Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in LEOS 1999: Proceedings of the Lasers and Electro-Optics Society Annual Meeting, L. Goldberg, ed. (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 184–185.

N. A. Riza, Z. Yaqoob, “High-speed fiber-optic probe for dynamic blood analysis measurements,” in Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics, A. V. Priezzhev, P. A. Oberg, eds., Proc. SPIE4163, 18–23 (2000).
[CrossRef]

Z. Yaqoob, N. A. Riza, “High-speed scanning probes for internal and external cavity biomedical optics,” in Biomedical Topical Meetings, Vol. 71 in OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 381–383.

Z. Yaqoob, N. A. Riza, “High-speed wavelength-multiplexed fiber-optic sensors for biomedicine,” poster paper presented at IEEE Sensors 2002, Orlando, Fla., 12–14 June 2002, p1.36.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the proposed intelligent free-space W-MOS for implementation of a no-moving-parts, ultrahigh-speed, desired A i power profile, 1-D θ i wide angular scan-range optical scanner. SMF, single-mode fiber; w inc, beam waist of the incident light; A i , amplitude of ith W-MOS scanned laser beam; θ i , direction of the ith W-MOS scanned laser beam.

Fig. 2
Fig. 2

Experimental setup to study the features of the laboratory free-space W-MOS. SMF, single-mode fiber; PD, photodetector; L i = ith lens; f i = focal length of ith lens (f 1 = 1.8 cm, f 2 = 75.0 cm, f 3 = 10.0 cm).

Fig. 3
Fig. 3

Theoretical and experimental plots for the absolute angular scan range |θ| versus wavelength of the tunable laser source, measured for our free-space W-MOS setup.

Fig. 4
Fig. 4

Maximum angular scan Δθ versus angle of incidence θinc measured for our free-space W-MOS setup.

Fig. 5
Fig. 5

Scanner insertion loss of the laboratory free-space W-MOS versus wavelength of the tunable laser source for different angles of incidence.

Fig. 6
Fig. 6

Calculated angular beam divergence of the laboratory free-space W-MOS as a function of wavelength of the tunable laser. θinc = 2.0°, w inc = 9.375 mm, m = +1, L = 1/600 mm.

Fig. 7
Fig. 7

Calculated wavelength resolution of the laboratory free-space W-MOS setup versus wavelength of the tunable laser. θinc = 2.0°, w inc = 9.375 mm, m = +1, L = 1/600 mm.

Fig. 8
Fig. 8

Calculated beam-pointing accuracy of the laboratory free-space W-MOS setup versus wavelength of the tunable laser. θinc = 2.0°, m = +1, L = 1/600 mm, δλ = 0.01 nm.

Tables (1)

Tables Icon

Table 1 Specifications Summary of the Demonstrated Free-Space W-MOS

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θm=sin-1mλL+sin θinc,
θm=-sin-1mλL+sin θinc.
θdiv=2λ cos θincπwinc cos θm,
Δλ=2Lλ cos θincmπwinc.
δθ=mL cos θm δλ.

Metrics