Abstract

We introduced recently phase measurements usually performed in interferometry to the domain of image processing and intelligent vision [IEEE Trans. Instrum. Meas. 49, 867 (2000)]. Our purpose is to sense with a high accuracy the position, orientation, and displacement of two-dimensional (2D) surfaces observed by a static vision system. We report on significant improvements of the method. Experimental measurements reveal a peak-valley noise of approximately 10-2 CCD pixel, corresponding approximately to a 10-3 period of the phase reference pattern. Then the observation of 10 µm scaled features enables an accuracy of a few nm in the position sensing of the phase reference pattern for the extended 2D measurement range.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Sandoz, J. C. Ravassard, S. Dembelé, A. Janex, “Phase sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49, 867–872 (2000).
    [CrossRef]
  2. P. Sandoz, R. Escalona, V. Bonnans, S. Dembelé, “From interferometry to image processing: Phase measurement vision method for high accuracy position sensing of rigid targets,” in Proceedings of Interferometry in Speckle Light: Theory and Applications, P. Jacquot, J. M. Fournier, eds. (Springer-Verlag, New York, 1999) pp. 421–428.
  3. P. Sandoz, P. Humbert, V. Bonnans, T. Gharbi, “Mesure de position subpixel,” French PatentNo. 02 02547.
  4. J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
    [CrossRef]
  5. A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
    [CrossRef]
  6. Y. Zheng, D. Bin, L. Xingzhan, Y. Ren, “Novel two-dimensional position measurement method with linear array charge-coupled device,” Opt. Eng. 37, 2601–2604 (1998).
    [CrossRef]
  7. L. Auzino, A. Cangiano, “A new alignment technique for steppers: hybrid marks,” Microelectron. Eng. 35, 225–228 (1997).
    [CrossRef]
  8. J. Trolinger, “Optical methods for wide scale displacement measurements,” Fringe ’97, Automatic Processing of Fringe Patterns (WileyEurope, 1998) pp. 255–266.
  9. B. Mukundakrishnan, B. Vikramaditya, B. Nelson, “Design for visually guided microassembly,” in Microrobotics and Microassembly, B. J. Nelson, J.-M. Breguet, eds. Proc. SPIE, 3834, 2–10 (1999).
    [CrossRef]
  10. P. Sandoz, “Wavelet transform as a processing tool in white light interferometry,” Opt. Lett. 22, 1065–1067 (1997).
    [CrossRef] [PubMed]
  11. S. Dembelé, K. Rochdi, P. Sandoz, P. Lemoal, “Development of a microrobot based micropositioning station: The microrobot and its position and orientation measurement method,” in Microrobotics and Microassembly IIIB. J. Nelson, J.-M. Breguet, Proc. SPIE4568, 318–324 (2001).
    [CrossRef]

2000 (1)

P. Sandoz, J. C. Ravassard, S. Dembelé, A. Janex, “Phase sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49, 867–872 (2000).
[CrossRef]

1998 (1)

Y. Zheng, D. Bin, L. Xingzhan, Y. Ren, “Novel two-dimensional position measurement method with linear array charge-coupled device,” Opt. Eng. 37, 2601–2604 (1998).
[CrossRef]

1997 (2)

L. Auzino, A. Cangiano, “A new alignment technique for steppers: hybrid marks,” Microelectron. Eng. 35, 225–228 (1997).
[CrossRef]

P. Sandoz, “Wavelet transform as a processing tool in white light interferometry,” Opt. Lett. 22, 1065–1067 (1997).
[CrossRef] [PubMed]

1995 (2)

J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
[CrossRef]

A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
[CrossRef]

Auzino, L.

L. Auzino, A. Cangiano, “A new alignment technique for steppers: hybrid marks,” Microelectron. Eng. 35, 225–228 (1997).
[CrossRef]

Bin, D.

Y. Zheng, D. Bin, L. Xingzhan, Y. Ren, “Novel two-dimensional position measurement method with linear array charge-coupled device,” Opt. Eng. 37, 2601–2604 (1998).
[CrossRef]

Bonnans, V.

P. Sandoz, R. Escalona, V. Bonnans, S. Dembelé, “From interferometry to image processing: Phase measurement vision method for high accuracy position sensing of rigid targets,” in Proceedings of Interferometry in Speckle Light: Theory and Applications, P. Jacquot, J. M. Fournier, eds. (Springer-Verlag, New York, 1999) pp. 421–428.

P. Sandoz, P. Humbert, V. Bonnans, T. Gharbi, “Mesure de position subpixel,” French PatentNo. 02 02547.

Cangiano, A.

L. Auzino, A. Cangiano, “A new alignment technique for steppers: hybrid marks,” Microelectron. Eng. 35, 225–228 (1997).
[CrossRef]

Chitnis, V.

A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
[CrossRef]

J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
[CrossRef]

Dembelé, S.

P. Sandoz, J. C. Ravassard, S. Dembelé, A. Janex, “Phase sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49, 867–872 (2000).
[CrossRef]

P. Sandoz, R. Escalona, V. Bonnans, S. Dembelé, “From interferometry to image processing: Phase measurement vision method for high accuracy position sensing of rigid targets,” in Proceedings of Interferometry in Speckle Light: Theory and Applications, P. Jacquot, J. M. Fournier, eds. (Springer-Verlag, New York, 1999) pp. 421–428.

S. Dembelé, K. Rochdi, P. Sandoz, P. Lemoal, “Development of a microrobot based micropositioning station: The microrobot and its position and orientation measurement method,” in Microrobotics and Microassembly IIIB. J. Nelson, J.-M. Breguet, Proc. SPIE4568, 318–324 (2001).
[CrossRef]

Escalona, R.

P. Sandoz, R. Escalona, V. Bonnans, S. Dembelé, “From interferometry to image processing: Phase measurement vision method for high accuracy position sensing of rigid targets,” in Proceedings of Interferometry in Speckle Light: Theory and Applications, P. Jacquot, J. M. Fournier, eds. (Springer-Verlag, New York, 1999) pp. 421–428.

Furuhashi, H.

J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
[CrossRef]

Gharbi, T.

P. Sandoz, P. Humbert, V. Bonnans, T. Gharbi, “Mesure de position subpixel,” French PatentNo. 02 02547.

Humbert, P.

P. Sandoz, P. Humbert, V. Bonnans, T. Gharbi, “Mesure de position subpixel,” French PatentNo. 02 02547.

Janex, A.

P. Sandoz, J. C. Ravassard, S. Dembelé, A. Janex, “Phase sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49, 867–872 (2000).
[CrossRef]

Kanjilal, A.

A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
[CrossRef]

Lemoal, P.

S. Dembelé, K. Rochdi, P. Sandoz, P. Lemoal, “Development of a microrobot based micropositioning station: The microrobot and its position and orientation measurement method,” in Microrobotics and Microassembly IIIB. J. Nelson, J.-M. Breguet, Proc. SPIE4568, 318–324 (2001).
[CrossRef]

Liu, J.

A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
[CrossRef]

J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
[CrossRef]

Mukundakrishnan, B.

B. Mukundakrishnan, B. Vikramaditya, B. Nelson, “Design for visually guided microassembly,” in Microrobotics and Microassembly, B. J. Nelson, J.-M. Breguet, eds. Proc. SPIE, 3834, 2–10 (1999).
[CrossRef]

Narain, R.

A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
[CrossRef]

Nelson, B.

B. Mukundakrishnan, B. Vikramaditya, B. Nelson, “Design for visually guided microassembly,” in Microrobotics and Microassembly, B. J. Nelson, J.-M. Breguet, eds. Proc. SPIE, 3834, 2–10 (1999).
[CrossRef]

Ravassard, J. C.

P. Sandoz, J. C. Ravassard, S. Dembelé, A. Janex, “Phase sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49, 867–872 (2000).
[CrossRef]

Ren, Y.

Y. Zheng, D. Bin, L. Xingzhan, Y. Ren, “Novel two-dimensional position measurement method with linear array charge-coupled device,” Opt. Eng. 37, 2601–2604 (1998).
[CrossRef]

Rochdi, K.

S. Dembelé, K. Rochdi, P. Sandoz, P. Lemoal, “Development of a microrobot based micropositioning station: The microrobot and its position and orientation measurement method,” in Microrobotics and Microassembly IIIB. J. Nelson, J.-M. Breguet, Proc. SPIE4568, 318–324 (2001).
[CrossRef]

Sandoz, P.

P. Sandoz, J. C. Ravassard, S. Dembelé, A. Janex, “Phase sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49, 867–872 (2000).
[CrossRef]

P. Sandoz, “Wavelet transform as a processing tool in white light interferometry,” Opt. Lett. 22, 1065–1067 (1997).
[CrossRef] [PubMed]

S. Dembelé, K. Rochdi, P. Sandoz, P. Lemoal, “Development of a microrobot based micropositioning station: The microrobot and its position and orientation measurement method,” in Microrobotics and Microassembly IIIB. J. Nelson, J.-M. Breguet, Proc. SPIE4568, 318–324 (2001).
[CrossRef]

P. Sandoz, R. Escalona, V. Bonnans, S. Dembelé, “From interferometry to image processing: Phase measurement vision method for high accuracy position sensing of rigid targets,” in Proceedings of Interferometry in Speckle Light: Theory and Applications, P. Jacquot, J. M. Fournier, eds. (Springer-Verlag, New York, 1999) pp. 421–428.

P. Sandoz, P. Humbert, V. Bonnans, T. Gharbi, “Mesure de position subpixel,” French PatentNo. 02 02547.

Sharma, R.

J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
[CrossRef]

A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
[CrossRef]

Singh, B.

A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
[CrossRef]

J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
[CrossRef]

Torii, A.

J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
[CrossRef]

Trolinger, J.

J. Trolinger, “Optical methods for wide scale displacement measurements,” Fringe ’97, Automatic Processing of Fringe Patterns (WileyEurope, 1998) pp. 255–266.

Uchida, Y.

A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
[CrossRef]

J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
[CrossRef]

Vikramaditya, B.

B. Mukundakrishnan, B. Vikramaditya, B. Nelson, “Design for visually guided microassembly,” in Microrobotics and Microassembly, B. J. Nelson, J.-M. Breguet, eds. Proc. SPIE, 3834, 2–10 (1999).
[CrossRef]

Xingzhan, L.

Y. Zheng, D. Bin, L. Xingzhan, Y. Ren, “Novel two-dimensional position measurement method with linear array charge-coupled device,” Opt. Eng. 37, 2601–2604 (1998).
[CrossRef]

Yamada, J.

A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
[CrossRef]

J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
[CrossRef]

Zheng, Y.

Y. Zheng, D. Bin, L. Xingzhan, Y. Ren, “Novel two-dimensional position measurement method with linear array charge-coupled device,” Opt. Eng. 37, 2601–2604 (1998).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

P. Sandoz, J. C. Ravassard, S. Dembelé, A. Janex, “Phase sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49, 867–872 (2000).
[CrossRef]

A. Kanjilal, R. Narain, R. Sharma, V. Chitnis, B. Singh, J. Liu, J. Yamada, Y. Uchida, “Automatic mask alignment without a microscope,” IEEE Trans. Instrum. Meas. 44, 806–809 (1995).
[CrossRef]

Microelectron. Eng. (1)

L. Auzino, A. Cangiano, “A new alignment technique for steppers: hybrid marks,” Microelectron. Eng. 35, 225–228 (1997).
[CrossRef]

Nanotechnology (1)

J. Liu, H. Furuhashi, A. Torii, R. Sharma, V. Chitnis, B. Singh, J. Yamada, Y. Uchida, “Automatic mask alignment in the θ direction using moiré sensors,” Nanotechnology 6, 135–138 (1995).
[CrossRef]

Opt. Eng. (1)

Y. Zheng, D. Bin, L. Xingzhan, Y. Ren, “Novel two-dimensional position measurement method with linear array charge-coupled device,” Opt. Eng. 37, 2601–2604 (1998).
[CrossRef]

Opt. Lett. (1)

Other (5)

P. Sandoz, R. Escalona, V. Bonnans, S. Dembelé, “From interferometry to image processing: Phase measurement vision method for high accuracy position sensing of rigid targets,” in Proceedings of Interferometry in Speckle Light: Theory and Applications, P. Jacquot, J. M. Fournier, eds. (Springer-Verlag, New York, 1999) pp. 421–428.

P. Sandoz, P. Humbert, V. Bonnans, T. Gharbi, “Mesure de position subpixel,” French PatentNo. 02 02547.

J. Trolinger, “Optical methods for wide scale displacement measurements,” Fringe ’97, Automatic Processing of Fringe Patterns (WileyEurope, 1998) pp. 255–266.

B. Mukundakrishnan, B. Vikramaditya, B. Nelson, “Design for visually guided microassembly,” in Microrobotics and Microassembly, B. J. Nelson, J.-M. Breguet, eds. Proc. SPIE, 3834, 2–10 (1999).
[CrossRef]

S. Dembelé, K. Rochdi, P. Sandoz, P. Lemoal, “Development of a microrobot based micropositioning station: The microrobot and its position and orientation measurement method,” in Microrobotics and Microassembly IIIB. J. Nelson, J.-M. Breguet, Proc. SPIE4568, 318–324 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Perpendicular strip sets used for position sensing by phase-vision.

Fig. 2
Fig. 2

Single square-dot pattern used for position sensing.

Fig. 3
Fig. 3

Power spectrum of square-dot pattern of Fig. 2.

Fig. 4
Fig. 4

Filtered power spectra for (a) vertical strip set recovering, (b) horizontal strip set recovering.

Fig. 5
Fig. 5

Reconstructed strip sets: (a) Vertical, (b) horizontal.

Fig. 6
Fig. 6

Centers reconstructed for 100 computations with a one gray-level rms noise.

Fig. 7
Fig. 7

rms error on reconstructed centers as a function of rms noise in recorded images.

Fig. 8
Fig. 8

rms error on reconstructed slope versus the actual slope (1 gray-level rms noise).

Fig. 9
Fig. 9

View of a multiple phase-mask pattern as recorded experimentally. The dot pattern identification is encoded within the additional feature.

Fig. 10
Fig. 10

Measurement stability: centers reconstructed for 100 measurements without target displacement over a few minutes. This view corresponds to an actual size of 17.4 * 6.1 nm2.

Fig. 11
Fig. 11

Detection of small displacements: NANO target displacements are driven by a PZT while detected by the proposed method. This view corresponds to an actual size of 205 * 93 nm2.

Metrics