Abstract

We describe a novel technique for deriving wave-front aberrations from two defocused intensity measurements. The intensity defines a probability density function, and the method is based on the evolution of the cumulative density function of the intensity with light propagation. In one dimension, the problem is easily solved with a histogram specification procedure, with a linear relationship between the wave-front slope and the difference in the abscissas of the histograms. In two dimensions, the method requires use of a Radon transform. Simulation results demonstrate that good reconstructions can be attained down to 100 photons in each detector. In addition, the method is insensitive to scintillation at the aperture.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tip/tilt estimation from defocused images

Marcos A. van Dam and Richard G. Lane
J. Opt. Soc. Am. A 19(4) 745-752 (2002)

Wave-front curvature sensing from a single defocused image

Paul Hickson
J. Opt. Soc. Am. A 11(5) 1667-1673 (1994)

Wave-front sensing from subdivision of the focal plane with a lenslet array

Richard M. Clare and Richard G. Lane
J. Opt. Soc. Am. A 22(1) 117-125 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription