Abstract

We previously reported optical true-time delay devices, based on the White cell, to support phased-array radars. In particular, we demonstrated a quadratic device, in which the number of delays obtainable was proportional to the square of the number of times the light beam bounced in the cell. Here we consider the possibilities when a microelectromechanical (MEM) tip/tilt mirror array with multiple stable states is used. We present and compare designs for quadratic, quartic, and octic cells using MEM mirror arrays with two, three, and five micro-mirror tilt angles. An octic cell with a three-state MEM can produce 6,339 different delays in just 17 bounces.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Norwood, Mass., 1994).
  2. N. Madamopoulos, N. A. Risa, “Demonstration of an all-digital 7-bit 33-channel photonic delay line for phased-array antennas,” Appl. Opt. 39, 4168–4181 (2000).
    [CrossRef]
  3. E. G. Paek, Y.-S. Im, J. K. Choe, T. K. Oh, “Acoustically steered and rotated true-time delay generator based on wavelength-division multiplexing,” Appl. Opt. 38, 1298–1308 (2000).
    [CrossRef]
  4. M. Y. Frankel, R. D. Esman, “Reconfigurable time-steered array-antenna beam former,” Appl. Opt. 36, 9261–9268 (1997).
    [CrossRef]
  5. D. T. K. Tong, M. C. Wu, “Transmit-receive module of multiwavelength optically controlled phase-array antennas,” IEEE Photon. Technol. Lett. 10, 1018–1019 (1998).
    [CrossRef]
  6. B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
    [CrossRef]
  7. R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
    [CrossRef]
  8. S. Yegnanarayanan, P. D. Trinh, B. Jalali, “Recirculating photonic filter: a wavelength-selective time delay for phased-array antennas and wavelength code-division multiple assess,” Opt. Lett. 21, 740–742 (1996).
    [CrossRef] [PubMed]
  9. D. Dolfi, P. Joffre, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 8, 1824–1828 (1996).
  10. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
    [CrossRef]
  11. K.-I. Kitayama, “Code division multiplexing lightwave networks based on optical code conversion,” IEEE J. Sel. Areas Commun. 16, 1309–1319 (1998).
    [CrossRef]
  12. M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber-optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 7, 463–465 (1982).
    [CrossRef] [PubMed]
  13. B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–932 (1984).
    [CrossRef]
  14. B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992).
    [CrossRef]
  15. S. Sales, J. Campany, J. MArti, D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
    [CrossRef]
  16. G. W. Euliss, R. A. Athale, “Time-integrating correlator based on fiber-optic delay lines,” Opt. Lett. 19, 649–651 (1994).
    [CrossRef] [PubMed]
  17. N. Wada, H. Sotobayshi, K. Kitayama, “Error-free 100 km transmission at 10 GBit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett. 35, 833–834 (1999).
    [CrossRef]
  18. B. L. Anderson, J. Stuart, A. Collins, C. A. Klein, E. A. Beecher, S. B. Brown, “Photonically produce true-time delays for phased antenna arrays,” Appl. Opt. 36, 8493–9503 (1997).
    [CrossRef]
  19. B. L. Anderson, C. D. Liddle, “Optical true-time delay for phased array antennas: demonstration of a quadratic White cell,” to be published in Appl. Opt.23, 2002.
  20. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optical wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
    [CrossRef]
  21. H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
    [CrossRef]
  22. W. Ng, A. A. Watson, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” IEEE J. Lightwave Technol. 8, 1124–1131 (1991).
    [CrossRef]
  23. P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guid Wave Lett. 3, 293–295 (1993).
    [CrossRef]
  24. A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
    [CrossRef] [PubMed]
  25. J. Stuart, A. Collins, B. L. Anderson, C. D. Liddle, “Optical delay unit for signal processing in phased array antennas,” presented at Optical Society of America Annual Meeting, Providence, Rhode Island, 2000.
  26. J. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  27. B. L. Anderson, J. Stuart, A. Collins, C. A. Klein, E. A. Beecher, S. B. Brown, “Optically Produced True-Time Delays for Phased Antenna Arrays,” Appl. Opt. 36, 8493–8503 (1997).
    [CrossRef]
  28. O. B. Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” presented at SPIE Micromachining and Microfabrication Symposium, San Francisco, 2001.
  29. D. J. Bishop, C. R. Giles, S. R. Das, “The rise of optical switching,” in Sci. Am.January, 2001, 88–94.

2001

D. J. Bishop, C. R. Giles, S. R. Das, “The rise of optical switching,” in Sci. Am.January, 2001, 88–94.

2000

E. G. Paek, Y.-S. Im, J. K. Choe, T. K. Oh, “Acoustically steered and rotated true-time delay generator based on wavelength-division multiplexing,” Appl. Opt. 38, 1298–1308 (2000).
[CrossRef]

N. Madamopoulos, N. A. Risa, “Demonstration of an all-digital 7-bit 33-channel photonic delay line for phased-array antennas,” Appl. Opt. 39, 4168–4181 (2000).
[CrossRef]

1999

N. Wada, H. Sotobayshi, K. Kitayama, “Error-free 100 km transmission at 10 GBit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett. 35, 833–834 (1999).
[CrossRef]

1998

D. T. K. Tong, M. C. Wu, “Transmit-receive module of multiwavelength optically controlled phase-array antennas,” IEEE Photon. Technol. Lett. 10, 1018–1019 (1998).
[CrossRef]

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

K.-I. Kitayama, “Code division multiplexing lightwave networks based on optical code conversion,” IEEE J. Sel. Areas Commun. 16, 1309–1319 (1998).
[CrossRef]

1997

1996

S. Yegnanarayanan, P. D. Trinh, B. Jalali, “Recirculating photonic filter: a wavelength-selective time delay for phased-array antennas and wavelength code-division multiple assess,” Opt. Lett. 21, 740–742 (1996).
[CrossRef] [PubMed]

D. Dolfi, P. Joffre, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 8, 1824–1828 (1996).

1995

S. Sales, J. Campany, J. MArti, D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

1994

1993

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guid Wave Lett. 3, 293–295 (1993).
[CrossRef]

1992

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optical wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992).
[CrossRef]

1991

W. Ng, A. A. Watson, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” IEEE J. Lightwave Technol. 8, 1124–1131 (1991).
[CrossRef]

1990

1985

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

1984

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–932 (1984).
[CrossRef]

1982

1942

Anderson, B. L.

B. L. Anderson, J. Stuart, A. Collins, C. A. Klein, E. A. Beecher, S. B. Brown, “Optically Produced True-Time Delays for Phased Antenna Arrays,” Appl. Opt. 36, 8493–8503 (1997).
[CrossRef]

B. L. Anderson, J. Stuart, A. Collins, C. A. Klein, E. A. Beecher, S. B. Brown, “Photonically produce true-time delays for phased antenna arrays,” Appl. Opt. 36, 8493–9503 (1997).
[CrossRef]

B. L. Anderson, C. D. Liddle, “Optical true-time delay for phased array antennas: demonstration of a quadratic White cell,” to be published in Appl. Opt.23, 2002.

J. Stuart, A. Collins, B. L. Anderson, C. D. Liddle, “Optical delay unit for signal processing in phased array antennas,” presented at Optical Society of America Annual Meeting, Providence, Rhode Island, 2000.

Athale, R. A.

Beecher, E. A.

Bishop, D. J.

D. J. Bishop, C. R. Giles, S. R. Das, “The rise of optical switching,” in Sci. Am.January, 2001, 88–94.

Bitsie, F.

O. B. Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” presented at SPIE Micromachining and Microfabrication Symposium, San Francisco, 2001.

Bowers, J. E.

Brown, S. B.

Campany, J.

S. Sales, J. Campany, J. MArti, D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Chang, Y.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Chen, R.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Choe, J. K.

E. G. Paek, Y.-S. Im, J. K. Choe, T. K. Oh, “Acoustically steered and rotated true-time delay generator based on wavelength-division multiplexing,” Appl. Opt. 38, 1298–1308 (2000).
[CrossRef]

Cohen, D. A.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Collins, A.

Cutler, C. C.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

Das, S. R.

D. J. Bishop, C. R. Giles, S. R. Das, “The rise of optical switching,” in Sci. Am.January, 2001, 88–94.

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optical wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
[CrossRef] [PubMed]

Dolfi, D.

D. Dolfi, P. Joffre, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 8, 1824–1828 (1996).

Easch, V.

O. B. Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” presented at SPIE Micromachining and Microfabrication Symposium, San Francisco, 2001.

Esman, R. D.

Espiau, F. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Euliss, G. W.

Fetterman, H. R.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Forrest, S. M.

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guid Wave Lett. 3, 293–295 (1993).
[CrossRef]

Forrest, S. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Frankel, M. Y.

Freitag, P. M.

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guid Wave Lett. 3, 293–295 (1993).
[CrossRef]

Fu, X.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Garcia, E. J.

O. B. Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” presented at SPIE Micromachining and Microfabrication Symposium, San Francisco, 2001.

Giles, C. R.

D. J. Bishop, C. R. Giles, S. R. Das, “The rise of optical switching,” in Sci. Am.January, 2001, 88–94.

Goodman, J. W.

B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992).
[CrossRef]

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–932 (1984).
[CrossRef]

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber-optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 7, 463–465 (1982).
[CrossRef] [PubMed]

Goutzoulis, A. P.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optical wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
[CrossRef] [PubMed]

Grossetete, G.

O. B. Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” presented at SPIE Micromachining and Microfabrication Symposium, San Francisco, 2001.

Im, Y.-S.

E. G. Paek, Y.-S. Im, J. K. Choe, T. K. Oh, “Acoustically steered and rotated true-time delay generator based on wavelength-division multiplexing,” Appl. Opt. 38, 1298–1308 (2000).
[CrossRef]

Jackson, K. P.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

Jakubsczak, J.

O. B. Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” presented at SPIE Micromachining and Microfabrication Symposium, San Francisco, 2001.

Jalali, B.

Joffre, P.

D. Dolfi, P. Joffre, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 8, 1824–1828 (1996).

Kelly, J. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Kitayama, K.

N. Wada, H. Sotobayshi, K. Kitayama, “Error-free 100 km transmission at 10 GBit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett. 35, 833–834 (1999).
[CrossRef]

Kitayama, K.-I.

K.-I. Kitayama, “Code division multiplexing lightwave networks based on optical code conversion,” IEEE J. Sel. Areas Commun. 16, 1309–1319 (1998).
[CrossRef]

Klein, C. A.

Levi, A. F. J.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Li, R. L. Q.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Liddle, C. D.

J. Stuart, A. Collins, B. L. Anderson, C. D. Liddle, “Optical delay unit for signal processing in phased array antennas,” presented at Optical Society of America Annual Meeting, Providence, Rhode Island, 2000.

B. L. Anderson, C. D. Liddle, “Optical true-time delay for phased array antennas: demonstration of a quadratic White cell,” to be published in Appl. Opt.23, 2002.

Madamopoulos, N.

Mani, S.

O. B. Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” presented at SPIE Micromachining and Microfabrication Symposium, San Francisco, 2001.

MArti, J.

S. Sales, J. Campany, J. MArti, D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Mather, A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Moslehi, B.

B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992).
[CrossRef]

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–932 (1984).
[CrossRef]

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber-optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 7, 463–465 (1982).
[CrossRef] [PubMed]

Newberg, I.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Newton, S. A.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

Ng, W.

W. Ng, A. A. Watson, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” IEEE J. Lightwave Technol. 8, 1124–1131 (1991).
[CrossRef]

Oh, T. K.

E. G. Paek, Y.-S. Im, J. K. Choe, T. K. Oh, “Acoustically steered and rotated true-time delay generator based on wavelength-division multiplexing,” Appl. Opt. 38, 1298–1308 (2000).
[CrossRef]

Paek, E. G.

E. G. Paek, Y.-S. Im, J. K. Choe, T. K. Oh, “Acoustically steered and rotated true-time delay generator based on wavelength-division multiplexing,” Appl. Opt. 38, 1298–1308 (2000).
[CrossRef]

Pastor, D.

S. Sales, J. Campany, J. MArti, D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Plant, D. V.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Risa, N. A.

Sales, S.

S. Sales, J. Campany, J. MArti, D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Scott, D. C.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Shaw, H. J.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–932 (1984).
[CrossRef]

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber-optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 7, 463–465 (1982).
[CrossRef] [PubMed]

Simonis, G. J.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Sotobayshi, H.

N. Wada, H. Sotobayshi, K. Kitayama, “Error-free 100 km transmission at 10 GBit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett. 35, 833–834 (1999).
[CrossRef]

Spahn, O. B.

O. B. Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” presented at SPIE Micromachining and Microfabrication Symposium, San Francisco, 2001.

Steier, W. H.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Stuart, J.

Tong, D. T. K.

D. T. K. Tong, M. C. Wu, “Transmit-receive module of multiwavelength optically controlled phase-array antennas,” IEEE Photon. Technol. Lett. 10, 1018–1019 (1998).
[CrossRef]

Toughlian, E. N.

H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Norwood, Mass., 1994).

Trinh, P. D.

Tsap, B.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Tur, M.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–932 (1984).
[CrossRef]

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber-optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 7, 463–465 (1982).
[CrossRef] [PubMed]

Wada, N.

N. Wada, H. Sotobayshi, K. Kitayama, “Error-free 100 km transmission at 10 GBit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett. 35, 833–834 (1999).
[CrossRef]

Watson, A. A.

W. Ng, A. A. Watson, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” IEEE J. Lightwave Technol. 8, 1124–1131 (1991).
[CrossRef]

White, J.

Wu, M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Wu, M. C.

D. T. K. Tong, M. C. Wu, “Transmit-receive module of multiwavelength optically controlled phase-array antennas,” IEEE Photon. Technol. Lett. 10, 1018–1019 (1998).
[CrossRef]

Yegnanarayanan, S.

Zmuda, H.

H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Norwood, Mass., 1994).

Zomp, J. M.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optical wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Appl. Opt.

Electron. Lett.

N. Wada, H. Sotobayshi, K. Kitayama, “Error-free 100 km transmission at 10 GBit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett. 35, 833–834 (1999).
[CrossRef]

S. Sales, J. Campany, J. MArti, D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

IEEE J. Lightwave Technol.

W. Ng, A. A. Watson, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” IEEE J. Lightwave Technol. 8, 1124–1131 (1991).
[CrossRef]

IEEE J. Sel. Areas Commun.

K.-I. Kitayama, “Code division multiplexing lightwave networks based on optical code conversion,” IEEE J. Sel. Areas Commun. 16, 1309–1319 (1998).
[CrossRef]

IEEE Microwave Guid Wave Lett.

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guid Wave Lett. 3, 293–295 (1993).
[CrossRef]

IEEE Microwave Guid. Wave Lett.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

D. T. K. Tong, M. C. Wu, “Transmit-receive module of multiwavelength optically controlled phase-array antennas,” IEEE Photon. Technol. Lett. 10, 1018–1019 (1998).
[CrossRef]

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

J. Lightwave Technol.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992).
[CrossRef]

J. Opt. Soc. Am.

Opt. Eng.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optical wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Opt. Lett.

Proc. IEEE

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–932 (1984).
[CrossRef]

Sci. Am.

D. J. Bishop, C. R. Giles, S. R. Das, “The rise of optical switching,” in Sci. Am.January, 2001, 88–94.

Other

J. Stuart, A. Collins, B. L. Anderson, C. D. Liddle, “Optical delay unit for signal processing in phased array antennas,” presented at Optical Society of America Annual Meeting, Providence, Rhode Island, 2000.

O. B. Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” presented at SPIE Micromachining and Microfabrication Symposium, San Francisco, 2001.

H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Norwood, Mass., 1994).

B. L. Anderson, C. D. Liddle, “Optical true-time delay for phased array antennas: demonstration of a quadratic White cell,” to be published in Appl. Opt.23, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Original White cell. Beams bounce multiple times between a set of three spherical mirrors, tracing out a pattern of spots on the left-hand-side mirror. (b) Quadratic optical TTD device with a MEM in place of the left-hand-side White-cell mirror. White cells have been set up along two axes, one at -θ and one at +3θ, where the MEM here is assumed to have two stable states, tipping to plus or minus θ.

Fig. 2
Fig. 2

Spot patterns produced for a single input beam in a White cell.

Fig. 3
Fig. 3

Quartic cell designed around a MEM with three stable mirror states.

Fig. 4
Fig. 4

Flower-petal octic TTD cell is based on a MEM with five stable micromirror tip angles: flat, and θ degrees to East, West, North, and South.

Fig. 5
Fig. 5

Broom design for an octic cell based on a MEM with five positions: flat, ±θ, and ±2θ, all in one plane.

Fig. 6
Fig. 6

The greater the pixel tip angle, the closer the field lenses can be to the MEM, and the overall size of the apparatus is reduced.

Fig. 7
Fig. 7

Comparison of the capability of the various polynomial cells. The flower-petal design based on (m - 1)/8 is a good tradeoff because it produces a large number of delays but can be built with a three-state MEM.

Tables (4)

Tables Icon

Table 1 Mirror Progressions in the Quartic Cella

Tables Icon

Table 2 Some Mirror Progressions for the Improved Quartic Cella

Tables Icon

Table 3 Some Mirror Progressions in the Flower-Petal Octic Cella

Tables Icon

Table 4 Some Mirror Progressions for the Alternatie Flower-Petal Designa

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

T=NΔ=m4m4+1Δ+m4Δ=m42+2m4Δ,
Tmax,quadratic=m4+1m4+1Δ+m4-11Δ=m42+3m4Δ.
NAECB=m-142+2m-14.
F  m-142+2m-14+1Δ=m-14+12
NF,E,C only=m-14trips to Fm-142+2m-14+1delay of F+m-14trips to Em-14+1delay of E+m-14trips to C1delay of C=m-143+3m-142+3m-14.
D  m-143+3m-142+3m-14+1Δ =m-14+13.
Nquartic =m4m-143+3m-142+3m-14+1+m-14m-142+2m-14+1+m-14m-14+1+m-141 =m-144+4m-143+6m-142+4m-14 =m-14+14-1.
C  1ΔE  m4+1ΔF  m42+2m4+1Δ=m4+12ΔD  m43+3m42+3m4+1Δ.
Nimproved quartic=m43+4m43+6m42+4m4-1 =m4+14-2.
C  1ΔE  m-18+1ΔD  m-182+2m-18+1Δ =m-18+12ΔF  m-183+3m-182+3m-181+1Δ=m-14+13Δ.
NCEDF=m-184+4m-183+6m-182+4m-18-1 =m-18+14-2.
G  m-184+4m-183+6m-182+4m-18Δ.
NCEDFG=m-18m-184+4m-183+6m-182+4m-18+m-184+4m-183+6m-182+4m-18-1 =m-185+5m-184+10m-183+10m-182+4m-18-1.
J  m-185+5m-184+10m-183+10 m-182+4m-18ΔH  m-186+6m-185+15m-184+20 m-183+14m-182+4m-18ΔK  m-187+7m-186+21m-185+35m-184+34m-183+18m-182+4m-18Δ.
Noctic=m-188+8m-187+28m-186+56m-185+68m-184+48m-183+16m-182+0m-18-1.
Nalternate flower-petal=m-288+8m-287+28m-286+56m-285+70m-284+56m-283+28m-282+8m-28-1 =m-28+18-2.
C  1Δ,D=m8+1 Δ,E=m8+12Δ,F=m8+13Δ,G=m8+14Δ,H=m8+15Δ,J=m8+16Δ,K=m8+17Δ,
Noctic,broom=m8+18.

Metrics