Abstract

A series of single-phase metastable Cu–Ag solid solutions was deposited by magnetron sputtering at liquid-nitrogen temperature. The lattice constant increases with increasing Ag content. The spectroscopic ellipsometer measurements clearly show that with increasing Ag content, the Cu-like and Ag-like absorption edges in the visible wavelength range shift continuously toward the high-energy and the low-energy sides, respectively.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Banhart, H. Ebert, R. Kuentzler, J. Voitlander, “Electronic properties of single-phased metastable Ag–Cu alloys,” Phys. Rev. B 46, 9968–9975 (1992).
    [CrossRef]
  2. R. E. Enrique, P. Bellon, “Self-organized Cu–Ag nanocomposites synthesized by intermediated temperature ion-beam mixing,” Appl. Phys. Lett. 78, 4178–4180 (2001).
    [CrossRef]
  3. J. Rivory, “Comparative study of the electronic structure of noble-metal–noble-metal alloys by optical spectroscopy,” Phys. Rev. B 15, 3119–3135 (1977).
    [CrossRef]
  4. P. O. Nilsson, G. Forsell, “Optical properties of metastable one-phase Cu–Ag alloys,” J. Phys. (Paris) 35, 57–59 (1974).
    [CrossRef]
  5. D. T. Hawkins, R. Hultgren, “Constitution of binary alloys,” in Metals Handbook, T. Lyman, ed. (American Society for Metals, Metals Park, Ohio, 1973), Vol. 8, p. 253.
  6. L. Y. Chen, X. W. Feng, Y. Su, H. Z. Ma, Y. H. Qian, “Design of a scanning ellipsometer by synchronous rotation of the polarizer and analyzer,” Appl. Opt. 33, 1299–1305 (1994).
    [CrossRef] [PubMed]
  7. N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, D. A. Papaconstantopoulous, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997), and references therein.
    [CrossRef]
  8. P. R. Wessel, “Reflectivity of silver–gold alloys in the spectral region 1.8–5.0 eV,” Phys. Rev. 132, 2062–2064 (1963).
    [CrossRef]
  9. K. Levin, H. Ehrenreich, “Model Hamiltonian description of Ag–Au alloys in the coherent-potential approximation,” Phys. Rev. B 3, 4172–4188 (1971).
    [CrossRef]
  10. H. Y. Li, S. M. Zhou, J. Li, Y. L. Chen, S. Y. Wang, Z. C. Shen, L. Y. Chen, H. Liu, X. X. Zhang, “Analysis of the Drude model in metallic films,” Appl. Opt. 40, 6307–6311 (2001).
    [CrossRef]
  11. F. Wooten, “Absorption and dispersion,” in Optical Properties of Solids (Academic, New York, 1972), Chap. 2, p. 52.

2001 (2)

R. E. Enrique, P. Bellon, “Self-organized Cu–Ag nanocomposites synthesized by intermediated temperature ion-beam mixing,” Appl. Phys. Lett. 78, 4178–4180 (2001).
[CrossRef]

H. Y. Li, S. M. Zhou, J. Li, Y. L. Chen, S. Y. Wang, Z. C. Shen, L. Y. Chen, H. Liu, X. X. Zhang, “Analysis of the Drude model in metallic films,” Appl. Opt. 40, 6307–6311 (2001).
[CrossRef]

1997 (1)

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, D. A. Papaconstantopoulous, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997), and references therein.
[CrossRef]

1994 (1)

1992 (1)

J. Banhart, H. Ebert, R. Kuentzler, J. Voitlander, “Electronic properties of single-phased metastable Ag–Cu alloys,” Phys. Rev. B 46, 9968–9975 (1992).
[CrossRef]

1977 (1)

J. Rivory, “Comparative study of the electronic structure of noble-metal–noble-metal alloys by optical spectroscopy,” Phys. Rev. B 15, 3119–3135 (1977).
[CrossRef]

1974 (1)

P. O. Nilsson, G. Forsell, “Optical properties of metastable one-phase Cu–Ag alloys,” J. Phys. (Paris) 35, 57–59 (1974).
[CrossRef]

1971 (1)

K. Levin, H. Ehrenreich, “Model Hamiltonian description of Ag–Au alloys in the coherent-potential approximation,” Phys. Rev. B 3, 4172–4188 (1971).
[CrossRef]

1963 (1)

P. R. Wessel, “Reflectivity of silver–gold alloys in the spectral region 1.8–5.0 eV,” Phys. Rev. 132, 2062–2064 (1963).
[CrossRef]

Anagnostopoulos, G. F.

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, D. A. Papaconstantopoulous, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997), and references therein.
[CrossRef]

Bacalis, N. C.

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, D. A. Papaconstantopoulous, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997), and references therein.
[CrossRef]

Banhart, J.

J. Banhart, H. Ebert, R. Kuentzler, J. Voitlander, “Electronic properties of single-phased metastable Ag–Cu alloys,” Phys. Rev. B 46, 9968–9975 (1992).
[CrossRef]

Bellon, P.

R. E. Enrique, P. Bellon, “Self-organized Cu–Ag nanocomposites synthesized by intermediated temperature ion-beam mixing,” Appl. Phys. Lett. 78, 4178–4180 (2001).
[CrossRef]

Chen, L. Y.

Chen, Y. L.

Ebert, H.

J. Banhart, H. Ebert, R. Kuentzler, J. Voitlander, “Electronic properties of single-phased metastable Ag–Cu alloys,” Phys. Rev. B 46, 9968–9975 (1992).
[CrossRef]

Ehrenreich, H.

K. Levin, H. Ehrenreich, “Model Hamiltonian description of Ag–Au alloys in the coherent-potential approximation,” Phys. Rev. B 3, 4172–4188 (1971).
[CrossRef]

Enrique, R. E.

R. E. Enrique, P. Bellon, “Self-organized Cu–Ag nanocomposites synthesized by intermediated temperature ion-beam mixing,” Appl. Phys. Lett. 78, 4178–4180 (2001).
[CrossRef]

Feng, X. W.

Forsell, G.

P. O. Nilsson, G. Forsell, “Optical properties of metastable one-phase Cu–Ag alloys,” J. Phys. (Paris) 35, 57–59 (1974).
[CrossRef]

Hawkins, D. T.

D. T. Hawkins, R. Hultgren, “Constitution of binary alloys,” in Metals Handbook, T. Lyman, ed. (American Society for Metals, Metals Park, Ohio, 1973), Vol. 8, p. 253.

Hultgren, R.

D. T. Hawkins, R. Hultgren, “Constitution of binary alloys,” in Metals Handbook, T. Lyman, ed. (American Society for Metals, Metals Park, Ohio, 1973), Vol. 8, p. 253.

Kuentzler, R.

J. Banhart, H. Ebert, R. Kuentzler, J. Voitlander, “Electronic properties of single-phased metastable Ag–Cu alloys,” Phys. Rev. B 46, 9968–9975 (1992).
[CrossRef]

Levin, K.

K. Levin, H. Ehrenreich, “Model Hamiltonian description of Ag–Au alloys in the coherent-potential approximation,” Phys. Rev. B 3, 4172–4188 (1971).
[CrossRef]

Li, H. Y.

Li, J.

Liu, H.

Ma, H. Z.

Nilsson, P. O.

P. O. Nilsson, G. Forsell, “Optical properties of metastable one-phase Cu–Ag alloys,” J. Phys. (Paris) 35, 57–59 (1974).
[CrossRef]

Papaconstantopoulous, D. A.

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, D. A. Papaconstantopoulous, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997), and references therein.
[CrossRef]

Papanicolaou, N. I.

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, D. A. Papaconstantopoulous, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997), and references therein.
[CrossRef]

Qian, Y. H.

Rivory, J.

J. Rivory, “Comparative study of the electronic structure of noble-metal–noble-metal alloys by optical spectroscopy,” Phys. Rev. B 15, 3119–3135 (1977).
[CrossRef]

Shen, Z. C.

Su, Y.

Voitlander, J.

J. Banhart, H. Ebert, R. Kuentzler, J. Voitlander, “Electronic properties of single-phased metastable Ag–Cu alloys,” Phys. Rev. B 46, 9968–9975 (1992).
[CrossRef]

Wang, S. Y.

Wessel, P. R.

P. R. Wessel, “Reflectivity of silver–gold alloys in the spectral region 1.8–5.0 eV,” Phys. Rev. 132, 2062–2064 (1963).
[CrossRef]

Wooten, F.

F. Wooten, “Absorption and dispersion,” in Optical Properties of Solids (Academic, New York, 1972), Chap. 2, p. 52.

Zhang, X. X.

Zhou, S. M.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. E. Enrique, P. Bellon, “Self-organized Cu–Ag nanocomposites synthesized by intermediated temperature ion-beam mixing,” Appl. Phys. Lett. 78, 4178–4180 (2001).
[CrossRef]

J. Phys. (Paris) (1)

P. O. Nilsson, G. Forsell, “Optical properties of metastable one-phase Cu–Ag alloys,” J. Phys. (Paris) 35, 57–59 (1974).
[CrossRef]

Phys. Rev. (1)

P. R. Wessel, “Reflectivity of silver–gold alloys in the spectral region 1.8–5.0 eV,” Phys. Rev. 132, 2062–2064 (1963).
[CrossRef]

Phys. Rev. B (4)

K. Levin, H. Ehrenreich, “Model Hamiltonian description of Ag–Au alloys in the coherent-potential approximation,” Phys. Rev. B 3, 4172–4188 (1971).
[CrossRef]

J. Banhart, H. Ebert, R. Kuentzler, J. Voitlander, “Electronic properties of single-phased metastable Ag–Cu alloys,” Phys. Rev. B 46, 9968–9975 (1992).
[CrossRef]

N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou, D. A. Papaconstantopoulous, “Electronic structure of ordered and disordered Cu–Ag alloys,” Phys. Rev. B 55, 2144–2149 (1997), and references therein.
[CrossRef]

J. Rivory, “Comparative study of the electronic structure of noble-metal–noble-metal alloys by optical spectroscopy,” Phys. Rev. B 15, 3119–3135 (1977).
[CrossRef]

Other (2)

D. T. Hawkins, R. Hultgren, “Constitution of binary alloys,” in Metals Handbook, T. Lyman, ed. (American Society for Metals, Metals Park, Ohio, 1973), Vol. 8, p. 253.

F. Wooten, “Absorption and dispersion,” in Optical Properties of Solids (Academic, New York, 1972), Chap. 2, p. 52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Representative x-ray diffraction pattern of the Cu–Ag alloys and (b) the Ag content dependence of the lattice constant of Cu100-x Ag x alloys. The point of x = 25 is taken from Ref. 7.

Fig. 2
Fig. 2

(a) Real and (b) imaginary parts of dielectric function of Cu100-x Ag x metastable alloy films, in the range of 1.5–4.5 eV.

Fig. 3
Fig. 3

(a) For metastable Cu50Ag50 alloy films, ε1 is a linear function of 1/(Γ2 + E 2) and (b) the reciprocal relaxation has a linear dependence on E 2.

Fig. 4
Fig. 4

(a) Optical energy loss function, (b) its derivative, and (c) the joint DOS of Cu100-x Ag x alloys with different compositions.

Fig. 5
Fig. 5

Two absorption edges move as the Ag content increases, where ω2 is defined as the maximum of the derivative of the energy loss function for the Cu-like absorption edge and ω1 is defined as the maximum of the energy loss function for Ag-like absorption edge. The ω0 refers to the photon energy at the onset of the interband transition in the low-energy side.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε1f=εb-ωP2ω2+Γ2,
ε2f=ωP2Γω3+ωΓ2,
Γ=ωε2fεb-ε1f.
ε1Ωp=0,
ε2Ωp  1.0.

Metrics