Abstract

A variable-addressability monocular that provides a variation in resolution across the field of view is presented. The variation in resolution is based on the eye’s visual-acuity curve. A prototype has been built that does a nonlinear mapping of the pixels, designed to work most efficiently with the human visual system. In addition a conventional, uniform-addressability prototype has been built. A human-factors experiment is presented that directly compares the variable-addressability prototype with the conventional system. The human-factors results show that the variable-addressability prototype provides better resolution 13% of the time but is 15% slower in use than the uniform-addressability prototype.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1990).
  2. K. Kubala, R. B. Hooker, “A variable addressability electronic binocular system,” Appl. Opt. 41, 707–716 (2002).
    [CrossRef] [PubMed]
  3. V. E. Diehl, “A variable acuity remote viewing system,” in Proceedings of the IEEE 1976 National Aerospace and Electronics Conference (Institute of Electrical and Electronics Engineers, New York, 1976), pp. 663–668.
  4. R. W. Fisher, “Variable acuity remote viewing system (VARVS),” in Proceedings of the IEEE 1978 National Aerospace and Electronics Conference, NAECON 78, (Institute of Electrical and Electronics Engineers, New York, 1978), pp. 1172–1179.
  5. M. Shenker, “Visual-simulation optical systems,” in Los Alamos Conference on Optics ’83, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE380, 22–29 (1983).
    [CrossRef]
  6. J. P. Rolland, A. Yoshida, L. D. Davis, J. H. Reif, “High-resolution inset head-mounted display,” Appl. Opt. 37, 4183–4193 (1998).
    [CrossRef]
  7. N. Alvertos, E. L. Hall, R. L. Anderson, “Omnidirectional viewing: the fish-eye lens problem,” in Proceedings of IEEE SOUTHEASTCON ’83 Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 174–179.
  8. Y. Suematsu, T. Hayase, “An advanced vision sensor with fovea,” in Proceedings of IECON ’90, Sixteenth Annual Conference of IEEE Industrial Electronics Society (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 1343, pp. 581–585.
    [CrossRef]
  9. Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in Proceedings of ACCV ’95, Second Asian Conference on Computer Vision (Nanyang Technolical University, Singapore, 1995), pp. 191–200.
  10. W. Schoenmakers, B. Roland, “Variable acuity optics study,” Summary Final Tech. Rep. (unclassified) (Hughes Optical Products, Des Plaines, Ill., 31May1991). Final report submitted under contract DAAB07–87-C-F059, which was a three-phase program from August1987 to January1991.
  11. K. Kubala, “Variable addressability imaging systems,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 2002).
  12. K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable-addressibility image sensors and display systems,” at Digest of Technical Papers, 1998 Society of Information Display International Symposium (Society of Information Display, Santa Anaheim, Calif., 1998).
    [CrossRef]
  13. L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
    [CrossRef]
  14. G. K. Kanji, 100 Statistical Tests (SAGE Publications, Towbridge, Wiltshire, 1999).
  15. C. M. Judd, G. H. McClelland, Data Analysis a Model-Comparison Approach (Harcourt Brace Jovanovich, Orlando, Fla., 1989).
  16. E. S. Edgington, Randomization Tests (Marcel Dekker, New York, 1995).
  17. P. Good, Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses (Springer-Verlag, New York, 2000).

2002

1998

1986

L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
[CrossRef]

Alvertos, N.

N. Alvertos, E. L. Hall, R. L. Anderson, “Omnidirectional viewing: the fish-eye lens problem,” in Proceedings of IEEE SOUTHEASTCON ’83 Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 174–179.

Anderson, R. L.

N. Alvertos, E. L. Hall, R. L. Anderson, “Omnidirectional viewing: the fish-eye lens problem,” in Proceedings of IEEE SOUTHEASTCON ’83 Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 174–179.

Davis, L. D.

Diehl, V. E.

V. E. Diehl, “A variable acuity remote viewing system,” in Proceedings of the IEEE 1976 National Aerospace and Electronics Conference (Institute of Electrical and Electronics Engineers, New York, 1976), pp. 663–668.

Edgington, E. S.

E. S. Edgington, Randomization Tests (Marcel Dekker, New York, 1995).

Fisher, R. W.

R. W. Fisher, “Variable acuity remote viewing system (VARVS),” in Proceedings of the IEEE 1978 National Aerospace and Electronics Conference, NAECON 78, (Institute of Electrical and Electronics Engineers, New York, 1978), pp. 1172–1179.

Good, P.

P. Good, Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses (Springer-Verlag, New York, 2000).

Hall, E. L.

N. Alvertos, E. L. Hall, R. L. Anderson, “Omnidirectional viewing: the fish-eye lens problem,” in Proceedings of IEEE SOUTHEASTCON ’83 Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 174–179.

Harvey, L. O.

L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
[CrossRef]

Hatch, A.

K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable-addressibility image sensors and display systems,” at Digest of Technical Papers, 1998 Society of Information Display International Symposium (Society of Information Display, Santa Anaheim, Calif., 1998).
[CrossRef]

Hayase, T.

Y. Suematsu, T. Hayase, “An advanced vision sensor with fovea,” in Proceedings of IECON ’90, Sixteenth Annual Conference of IEEE Industrial Electronics Society (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 1343, pp. 581–585.
[CrossRef]

Hooker, R. B.

K. Kubala, R. B. Hooker, “A variable addressability electronic binocular system,” Appl. Opt. 41, 707–716 (2002).
[CrossRef] [PubMed]

K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable-addressibility image sensors and display systems,” at Digest of Technical Papers, 1998 Society of Information Display International Symposium (Society of Information Display, Santa Anaheim, Calif., 1998).
[CrossRef]

Judd, C. M.

C. M. Judd, G. H. McClelland, Data Analysis a Model-Comparison Approach (Harcourt Brace Jovanovich, Orlando, Fla., 1989).

Kanji, G. K.

G. K. Kanji, 100 Statistical Tests (SAGE Publications, Towbridge, Wiltshire, 1999).

Kita, N.

Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in Proceedings of ACCV ’95, Second Asian Conference on Computer Vision (Nanyang Technolical University, Singapore, 1995), pp. 191–200.

Kubala, K.

K. Kubala, R. B. Hooker, “A variable addressability electronic binocular system,” Appl. Opt. 41, 707–716 (2002).
[CrossRef] [PubMed]

K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable-addressibility image sensors and display systems,” at Digest of Technical Papers, 1998 Society of Information Display International Symposium (Society of Information Display, Santa Anaheim, Calif., 1998).
[CrossRef]

K. Kubala, “Variable addressability imaging systems,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 2002).

Kuniyoshi, Y.

Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in Proceedings of ACCV ’95, Second Asian Conference on Computer Vision (Nanyang Technolical University, Singapore, 1995), pp. 191–200.

Lewis, L.

K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable-addressibility image sensors and display systems,” at Digest of Technical Papers, 1998 Society of Information Display International Symposium (Society of Information Display, Santa Anaheim, Calif., 1998).
[CrossRef]

McClelland, G. H.

C. M. Judd, G. H. McClelland, Data Analysis a Model-Comparison Approach (Harcourt Brace Jovanovich, Orlando, Fla., 1989).

Reif, J. H.

Roland, B.

W. Schoenmakers, B. Roland, “Variable acuity optics study,” Summary Final Tech. Rep. (unclassified) (Hughes Optical Products, Des Plaines, Ill., 31May1991). Final report submitted under contract DAAB07–87-C-F059, which was a three-phase program from August1987 to January1991.

Rolland, J. P.

Rougeaux, S.

Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in Proceedings of ACCV ’95, Second Asian Conference on Computer Vision (Nanyang Technolical University, Singapore, 1995), pp. 191–200.

Schoenmakers, W.

W. Schoenmakers, B. Roland, “Variable acuity optics study,” Summary Final Tech. Rep. (unclassified) (Hughes Optical Products, Des Plaines, Ill., 31May1991). Final report submitted under contract DAAB07–87-C-F059, which was a three-phase program from August1987 to January1991.

Shenker, M.

M. Shenker, “Visual-simulation optical systems,” in Los Alamos Conference on Optics ’83, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE380, 22–29 (1983).
[CrossRef]

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1990).

Suehiro, T.

Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in Proceedings of ACCV ’95, Second Asian Conference on Computer Vision (Nanyang Technolical University, Singapore, 1995), pp. 191–200.

Suematsu, Y.

Y. Suematsu, T. Hayase, “An advanced vision sensor with fovea,” in Proceedings of IECON ’90, Sixteenth Annual Conference of IEEE Industrial Electronics Society (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 1343, pp. 581–585.
[CrossRef]

Yoshida, A.

Appl. Opt.

Behav. Res. Methods Instrum. Comput.

L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
[CrossRef]

Other

G. K. Kanji, 100 Statistical Tests (SAGE Publications, Towbridge, Wiltshire, 1999).

C. M. Judd, G. H. McClelland, Data Analysis a Model-Comparison Approach (Harcourt Brace Jovanovich, Orlando, Fla., 1989).

E. S. Edgington, Randomization Tests (Marcel Dekker, New York, 1995).

P. Good, Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses (Springer-Verlag, New York, 2000).

V. E. Diehl, “A variable acuity remote viewing system,” in Proceedings of the IEEE 1976 National Aerospace and Electronics Conference (Institute of Electrical and Electronics Engineers, New York, 1976), pp. 663–668.

R. W. Fisher, “Variable acuity remote viewing system (VARVS),” in Proceedings of the IEEE 1978 National Aerospace and Electronics Conference, NAECON 78, (Institute of Electrical and Electronics Engineers, New York, 1978), pp. 1172–1179.

M. Shenker, “Visual-simulation optical systems,” in Los Alamos Conference on Optics ’83, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE380, 22–29 (1983).
[CrossRef]

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1990).

N. Alvertos, E. L. Hall, R. L. Anderson, “Omnidirectional viewing: the fish-eye lens problem,” in Proceedings of IEEE SOUTHEASTCON ’83 Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 174–179.

Y. Suematsu, T. Hayase, “An advanced vision sensor with fovea,” in Proceedings of IECON ’90, Sixteenth Annual Conference of IEEE Industrial Electronics Society (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 1343, pp. 581–585.
[CrossRef]

Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in Proceedings of ACCV ’95, Second Asian Conference on Computer Vision (Nanyang Technolical University, Singapore, 1995), pp. 191–200.

W. Schoenmakers, B. Roland, “Variable acuity optics study,” Summary Final Tech. Rep. (unclassified) (Hughes Optical Products, Des Plaines, Ill., 31May1991). Final report submitted under contract DAAB07–87-C-F059, which was a three-phase program from August1987 to January1991.

K. Kubala, “Variable addressability imaging systems,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 2002).

K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable-addressibility image sensors and display systems,” at Digest of Technical Papers, 1998 Society of Information Display International Symposium (Society of Information Display, Santa Anaheim, Calif., 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Plot of the eye’s visual acuity function.

Fig. 2
Fig. 2

Resolution of the prototypes.

Fig. 3
Fig. 3

(a) Objective and (b) eyepiece hardware.

Fig. 4
Fig. 4

Components of the variable-addressability housing.

Fig. 5
Fig. 5

Image-plane irradiance plot from the objective as modeled in TracePro.

Fig. 6
Fig. 6

Components of the uniform-addressability prototype.

Fig. 7
Fig. 7

Components of the uniform-addressability housing.

Fig. 8
Fig. 8

Experimental layout.

Fig. 9
Fig. 9

Example of a test image (left) and typical dimensions of Landolt C (right).

Fig. 10
Fig. 10

Target locations.

Fig. 11
Fig. 11

Projection system block diagram: ND, neutral density.

Fig. 12
Fig. 12

Data-acquisition block diagram.

Fig. 13
Fig. 13

Temporal acoustic signal of the slide projector.

Fig. 14
Fig. 14

Sample of a measurement.

Tables (3)

Tables Icon

Table 1 Target Distributions

Tables Icon

Table 2 Percentage Correct for the Different Resolutions over the Two Prototypes

Tables Icon

Table 3 Statistical Differences in Response Times between the Two Prototypes

Metrics