Abstract

We have developed a new method to design aspheric lenses. The conventional technique is usually based on analytic definition of optical surfaces; in the new method discretely defined aspheres are used, and the final design is attained point by point with an iterative algorithm. Simulation results are compared with results obtained with conventional optical design software to prove that this new method is more effective and reliable for designing aspheric lenses, especially when the aspheric order is high.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Shannon, The Art and Science of Optical Design (Cambridge U. Press, Cambridge, UK, 1997), pp. 349–352.
  2. E. Glatzel, R. Wilson, “Adaptive automatic correction in optical design,” Appl. Opt. 7, 265–276 (1968).
    [CrossRef] [PubMed]
  3. T. Suzuki, S. Yonezawa, “System of simultaneous nonlinear inequalities and automatic lens-design method,” J. Opt. Soc. Am. 56, 677–683 (1966).
    [CrossRef]
  4. S. A. Lerner, J. M. Sasian, “Novel aspheric surfaces for optical design,” in Novel Optical Systems Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 17–25 (2000).
    [CrossRef]
  5. G. Schulz, “Higer order aplanatism,” Opt. Commun. 41, 315–319 (1982).
    [CrossRef]
  6. P. Benítez, J. C. Miñano, “Ultrahigh-numerical-aperture imaging concentrator,” J. Opt. Soc. Am. A 14, 1988–1997 (1997).
    [CrossRef]
  7. J. J. M. Braat, A. Smid, M. M. B. Wijnakker, “Design and production technology of replicated aspheric objective lenses for optical disk systems,” Appl. Opt. 24, 1853–1855 (1985).
    [CrossRef] [PubMed]
  8. J. C. Miñano, P. Benítez, J. C. González, “RX: a nonimaging concentrator,” Appl. Opt. 34, 2226–2235 (1995).
    [CrossRef] [PubMed]
  9. J. C. Miñano, J. C. González, “New method of design of nonimaging concentrators,” Appl. Opt. 31, 3051–3060 (1992).
    [CrossRef] [PubMed]
  10. zemax, Optical Design Program User Guide, Version 5.0 (Focus Software, Tucson, Ariz., 1996).

1997 (1)

1995 (1)

1992 (1)

1985 (1)

1982 (1)

G. Schulz, “Higer order aplanatism,” Opt. Commun. 41, 315–319 (1982).
[CrossRef]

1968 (1)

1966 (1)

Benítez, P.

Braat, J. J. M.

Glatzel, E.

González, J. C.

Lerner, S. A.

S. A. Lerner, J. M. Sasian, “Novel aspheric surfaces for optical design,” in Novel Optical Systems Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 17–25 (2000).
[CrossRef]

Miñano, J. C.

Sasian, J. M.

S. A. Lerner, J. M. Sasian, “Novel aspheric surfaces for optical design,” in Novel Optical Systems Design and Optimization III, J. M. Sasian, ed., Proc. SPIE4092, 17–25 (2000).
[CrossRef]

Schulz, G.

G. Schulz, “Higer order aplanatism,” Opt. Commun. 41, 315–319 (1982).
[CrossRef]

Shannon, R. R.

R. R. Shannon, The Art and Science of Optical Design (Cambridge U. Press, Cambridge, UK, 1997), pp. 349–352.

Smid, A.

Suzuki, T.

Wijnakker, M. M. B.

Wilson, R.

Yonezawa, S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of the optical disk system. The collimated light is focused onto an optical disk by the objective lens. Dashed curves, discretized surfaces.

Fig. 2
Fig. 2

Schematic plot of the ray paths for the optical system. WD, working distance.

Fig. 3
Fig. 3

Profile difference between lens A designed with zemax and lens B designed with the new method.

Fig. 4
Fig. 4

Ray aberrations of lens A designed with zemax in the case of the (a) 0° field and (b) 0.5° field.

Fig. 5
Fig. 5

Ray aberrations of lens B designed with the new method in the case of the (a) 0° field and (b) 0.5° field.

Fig. 6
Fig. 6

Spot diagram of the lens (a) designed with zemax and (b) designed with the new method.

Fig. 7
Fig. 7

Deviation of the best-fit analytic aspheric surfaces with the discrete ones.

Tables (4)

Tables Icon

Table 1 Coordinates of the Relevant Points

Tables Icon

Table 2 Components of Vectors k, k*, k′, kd, T, T*, and T′

Tables Icon

Table 3 Components of Vectors kα, kα*, kα, kαdT α , Tα*, and Tα

Tables Icon

Table 4 First-Order Design Parameters of the Optical System

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

nk-n*k*·T=0,
n*k*-nk · T*=0,
nk-ndkd · T=0.
dzdySj1=ΔzΔySj1=zj1-zj-11yj1-yj-11,
dzdySj2=ΔzΔySj2=zj2-zj-12yj2-yj-12,
nkα-n*kα* · Tα=0,
n*kα*-nkα · Tα*=0,
nkα-ndkαd · Tα=0.
dzdyA+11=Lξj, zy=ΔzΔySj1+ΔΔzΔyΔySj1ξj-yj1 =zj1-zj-11yj1-yj-11+zj1-zj-11yj1-yj-11-zj-11-zj-21yj-11-yj-21yj1-yj-11ξj-yj1.
zA+11=ηj=L2ξj, z=ξj-yj-11ξj-yj1yj-21-yj-11yj-21-yj1 zj-21+ξj-yj-21ξj-yj1yj-11-yj-21yj-11-yj1 zj-11+ξj-yj-21ξj-yj-11yj1-yj-21yj1-yj-11 zj1.
yj1=jh=jRN  j=0, 1, 2,  N,
FjXj=0, Fj=fj1, fj2, fj3, fj4, fj5, fj6, fj7, fj8T, Xj=yj1, zj1, yj2, zj2, ξj, ηj, νj, λjT.
c1=1t1-WD+td/ndfnn-1.
yj1=y˜j1,ξj=y˜+11,zj1=z˜j1,ηj=z˜+11,yj2=y˜j2,νj=y˜j3,zj2=z˜j2,λj=y˜+13 j=0, 1.
dFjdXXjkΔXjk=-ω·FjXjk,
z=cy21+1-1+kc2y21/2+α1y2+α2y4+α3y6+α4y8+α5y10+α6y12.
sintan-1zj2-zj1yj2-yj1
costan-1t+WD-zj2νj-yj2
sintan-1t+WD-zj2νj-yj2
costan-1td-νj
sintan-1td-νj
costan-1dzdySj1
sintan-1dzdySj1
costan-1dzdySj2
sintan-1dzdySj2
costan-1zj2-ηjyj2-ξj
sintan-1zj2-ηjyj2-ξj
costan-1t+WD-zj2λj-yj2
sintan-1t+WD-zj2λj-yj2
costan-1tdf sin α-λj
sintan-1tdf sin α-λj
costan-1dzdyA+11
sintan-1dzdyA+11
costan-1dzdySj2
sintan-1dzdySj2

Metrics