Abstract

The time-dependent response of a 1-mm2 silicon photodiode was characterized by use of pulsed synchrotron radiation in the 4- to 16-nm-wavelength range. Modeling the input radiation pulse and the electrical response of the photodiode allowed the photodiode’s capacitance as a function of wavelength and applied bias voltage to be determined. The capacitance was in the 7- to 19-pF range and resulted in response fall times as small as 0.4 ns. The capacitance determined by pulsed x-ray illumination was in good agreement with the capacitance determined by pulsed optical laser illumination. The absolute responsivity was measured by comparison with the responsivity of a calibrated photodiode.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
    [CrossRef]
  2. R. T. Eagleton, L. E. Ruggles, “Soft x-ray characterization of a silicon p–n photodiode using a laser produced plasma source,” Rev. Sci. Instrum. 72, 1205 (2001).
    [CrossRef]
  3. L. R. Canfield, “Photodiode Detectors,” in Vacuum Ultraviolet Spectroscopy II, J. A. R. Samson, D. L. Ederer, eds. (Academic, San Diego, 1998).
    [CrossRef]
  4. J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
    [CrossRef]
  5. W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
    [CrossRef]
  6. E. Z. Rothman, ed., National Synchrotron Light Source Activity Report, Brookhaven National Laboratory publication BNL-52554 (Brookhaven National Laboratory, Brookhaven, N.Y., 1998), pp. 4–9.
  7. International Radiation Detectors Inc., 2527 West 237 Street, Unit C, Torrance, Calif. 90505; www.ird-inc.com .
  8. G. W. Neudeck, The PN Junction Diode (Addison-Wesley, Reading, Pa., 1989).
  9. J. Millman, C. Halkias, Integrated Electronics: Analog and Digital Circuits and Systems (McGraw-Hill, New York, 1972).
  10. F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
    [CrossRef]
  11. J. F. Seely, “Responsivity model for a silicon photodiode in the extreme ultraviolet,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. Korendyke, O. Siegmund, B. Woodgate, eds., Proc. SPIE4139, 1–7 (2000).
    [CrossRef]
  12. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]
  13. Updated optical constants were obtained from the internet site (retrieved June2000), cindy.lbl.gov/optical_constants .
  14. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, 1985), pp. 547–569.
    [CrossRef]
  15. H. R. Philipp, “Silicon dioxide (SiO2),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, 1985), pp. 719–747.
    [CrossRef]

2001 (2)

J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

R. T. Eagleton, L. E. Ruggles, “Soft x-ray characterization of a silicon p–n photodiode using a laser produced plasma source,” Rev. Sci. Instrum. 72, 1205 (2001).
[CrossRef]

1996 (1)

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

1993 (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

1989 (1)

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

1986 (1)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
[CrossRef]

Brown, C.

J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Canfield, L. R.

L. R. Canfield, “Photodiode Detectors,” in Vacuum Ultraviolet Spectroscopy II, J. A. R. Samson, D. L. Ederer, eds. (Academic, San Diego, 1998).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Deniz, A.

J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Eagleton, R. T.

R. T. Eagleton, L. E. Ruggles, “Soft x-ray characterization of a silicon p–n photodiode using a laser produced plasma source,” Rev. Sci. Instrum. 72, 1205 (2001).
[CrossRef]

Edwards, D. F.

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, 1985), pp. 547–569.
[CrossRef]

Feldman, U.

J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Halkias, C.

J. Millman, C. Halkias, Integrated Electronics: Analog and Digital Circuits and Systems (McGraw-Hill, New York, 1972).

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Holland, G.

J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Hunter, W. R.

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
[CrossRef]

Klapisch, M.

J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Millman, J.

J. Millman, C. Halkias, Integrated Electronics: Analog and Digital Circuits and Systems (McGraw-Hill, New York, 1972).

Neudeck, G. W.

G. W. Neudeck, The PN Junction Diode (Addison-Wesley, Reading, Pa., 1989).

Philipp, H. R.

H. R. Philipp, “Silicon dioxide (SiO2),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, 1985), pp. 719–747.
[CrossRef]

Rabus, H.

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

Rife, J. C.

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
[CrossRef]

Ruggles, L. E.

R. T. Eagleton, L. E. Ruggles, “Soft x-ray characterization of a silicon p–n photodiode using a laser produced plasma source,” Rev. Sci. Instrum. 72, 1205 (2001).
[CrossRef]

Sadeghi, H. R.

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Scholze, F.

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

Seely, J.

J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Seely, J. F.

J. F. Seely, “Responsivity model for a silicon photodiode in the extreme ultraviolet,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. Korendyke, O. Siegmund, B. Woodgate, eds., Proc. SPIE4139, 1–7 (2000).
[CrossRef]

Serlin, V.

J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Ulm, G.

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

Weaver, J.

J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Nucl. Instrum. Methods A (1)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
[CrossRef]

Rev. Sci. Instrum. (3)

J. Weaver, G. Holland, U. Feldman, J. Seely, C. Brown, V. Serlin, A. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the NIKE laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

R. T. Eagleton, L. E. Ruggles, “Soft x-ray characterization of a silicon p–n photodiode using a laser produced plasma source,” Rev. Sci. Instrum. 72, 1205 (2001).
[CrossRef]

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Other (9)

Updated optical constants were obtained from the internet site (retrieved June2000), cindy.lbl.gov/optical_constants .

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, 1985), pp. 547–569.
[CrossRef]

H. R. Philipp, “Silicon dioxide (SiO2),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, 1985), pp. 719–747.
[CrossRef]

L. R. Canfield, “Photodiode Detectors,” in Vacuum Ultraviolet Spectroscopy II, J. A. R. Samson, D. L. Ederer, eds. (Academic, San Diego, 1998).
[CrossRef]

J. F. Seely, “Responsivity model for a silicon photodiode in the extreme ultraviolet,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. Korendyke, O. Siegmund, B. Woodgate, eds., Proc. SPIE4139, 1–7 (2000).
[CrossRef]

E. Z. Rothman, ed., National Synchrotron Light Source Activity Report, Brookhaven National Laboratory publication BNL-52554 (Brookhaven National Laboratory, Brookhaven, N.Y., 1998), pp. 4–9.

International Radiation Detectors Inc., 2527 West 237 Street, Unit C, Torrance, Calif. 90505; www.ird-inc.com .

G. W. Neudeck, The PN Junction Diode (Addison-Wesley, Reading, Pa., 1989).

J. Millman, C. Halkias, Integrated Electronics: Analog and Digital Circuits and Systems (McGraw-Hill, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Signals measured by means of pulsed x-ray and laser illumination. The curve labeled HS1 0-mono (asterisk data symbols) was recorded by the AXUV-HS1 photodiode with a 0.15-mm-diameter aperture and was illuminated by the monochromator’s zero-order radiation. A 700-ps Gaussian curve is fitted to the data points. The other three curve were recorded by means of the AXUV-HS5 photodiode with a 0.8-mm-diameter aperture. The data symbols and the illumination conditions are HS5 0-mono (triangular: zero-order radiation), HS5 93 eV (square; 93-eV radiation), and HS5 68-ps laser (diamond; 68-ps pulsed laser radiation).

Fig. 2
Fig. 2

Electrical circuit for the photodiode. I(t) represents the time-dependent current resulting from the transient deposition of radiation energy in the depletion region.

Fig. 3
Fig. 3

Observed voltage pulses (dashed curves) and the fitted voltage pulses (solid curves) recorded with the AXUV-HS5 with a 0.8-mm aperture, 13.3-nm incident radiation, and bias voltages of 88, 66, and 44 V. The inferred input pulses are also shown.

Fig. 4
Fig. 4

Fitted parameters for the AXUV-HS5 photodiode with a 0.8-mm aperture and x-ray illumination. (a) Area under the voltage signal curve. (b) Height of the voltage signal curve. (c) Photodiode capacitance. (d) Offset time between the peaks of the signal curve and the driving pulse.

Fig. 5
Fig. 5

Ratio of the equivalent current from the AXUV-HS5 photodiode measured in the transient mode and the steady-state current measured by the Keithley 237 electrometer. The horizontal dashed lines indicate the average and the standard deviation values.

Fig. 6
Fig. 6

Observed voltage pulses (dashed curves) and the fitted voltage curves (solid curves) recorded with the AXUV-HS5 photodiodes with a 0.8-mm aperture, 68-ps laser illumination, and bias voltages of 88, 66, 44, and 22 V. The inferred input pulses are also shown.

Fig. 7
Fig. 7

Fitted parameters for AXUV-HS5 photodiodes and 68-ps pulsed laser illumination. (a) Area under the voltage signal curve. (b) Height of the voltage signal curve. (c) Photodiode capacitance. (d) Offset time between the peaks of the signal curve and the driving pulse. The aperture sizes were 0.4 (solid curve) and 0.8 mm (dashed curve).

Fig. 8
Fig. 8

AXUV-HS5 photodiode capacitance determined with pulsed laser illumination, pulsed x-ray illumination, and no illumination.

Fig. 9
Fig. 9

Calculated photodiode signal curves for the indicated values of photodiode capacitance (1 or 12 pF) and input pulse fwhm duration (0.1 or 0.7 ns).

Fig. 10
Fig. 10

(a) Ratio of the time-averaged currents from the AXUV-HS5 and the AXUV-100G photodiodes where ±5% error bars are indicated. (b) The measured responsivities for the AXUV-100G (curve 1) and the AXUV-HS5 (curve 2) photodiodes. The calculated responsivities of the AXUV-100G (curve 3) and the AXUV-HS5 (curve 4) photodiodes.

Fig. 11
Fig. 11

Curves 1 through 4 are the calculated responsivities from each of the four photodiode regions of the AXUV-100G photodiode (a) and the AXUV-HS5 photodiode (b). Curve 5 is the total responsivity, and the data points are the measured absolute responsivity of the AXUV-100G photodiode from Ref. 10.

Fig. 12
Fig. 12

Steady-state responsivities of the AXUV-100G reference photodiode (curve 1) and the AXUV-HS5 photodiode (curve 2) without bias voltage. The other three curves are the responsivities of the AXUV-HS5 in the pulsed mode with bias voltages of 44, 66, and 88 V.

Tables (1)

Tables Icon

Table 1 Photodiode Types, Sensitive Areas, and Apertures

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

CdV/dt+Vt/R=It,
It=Io exp-t-to2/σ2,
Vt=Io/Cexp-t/τtftdt,
Vt=Io/CG1G2/τ1τ2exp-t/τ2texp-v/τ1×vexp-u/τuftdt×expu/τ1duexpv/τ2dv.

Metrics