Abstract

We demonstrate microscopic time-resolved two-dimensional (2D) imaging that is based on a femtosecond amplifying optical Kerr gate (fs-amp OKG). The contribution of the optical nonlinear effects to the transverse imaging performance and the limit of the transverse resolving power are investigated. The optical Kerr effect in the excited state with amplification, used in the fs-amp OKG, does not deteriorate the quality of the time-resolved image at transverse resolutions up to at least 5.5 µm. We obtain a femtosecond-time-resolved 2D image of a microscopic object with a transverse resolution of 1.7 µm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
    [CrossRef] [PubMed]
  2. M. A. Duguay, A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10, 2162–2170 (1971).
    [CrossRef] [PubMed]
  3. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  4. J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 11, 150–153 (1986).
    [CrossRef] [PubMed]
  5. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  6. J. C. Hebden, R. A. Kruger, K. S. Wong, “Time-resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
    [CrossRef] [PubMed]
  7. J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Three-dimensional reflective image reconstruction through a scattering medium based on time-gated Raman amplification,” Opt. Lett. 19, 1234–1236 (1994).
    [CrossRef] [PubMed]
  8. K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
    [CrossRef]
  9. K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
    [CrossRef]
  10. T. Yasui, K. Minoshima, H. Matsumoto, “Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate,” Appl. Opt. 39, 65–71 (2000).
    [CrossRef]
  11. F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun. 118, 25–27 (1995).
    [CrossRef]
  12. K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” in Abstracts of the Fifth International Workshop on Femtosecond Technology (FST’98), H. Yajima, F. Saito, eds. (Femtosecond Technology Research Association, Tsukuba, Japan, 1998), p. 120.

2000 (1)

1999 (1)

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

1995 (1)

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

1994 (2)

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Three-dimensional reflective image reconstruction through a scattering medium based on time-gated Raman amplification,” Opt. Lett. 19, 1234–1236 (1994).
[CrossRef] [PubMed]

1991 (2)

J. C. Hebden, R. A. Kruger, K. S. Wong, “Time-resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

1990 (1)

1989 (1)

1986 (1)

1971 (1)

Abraham, E.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” in Abstracts of the Fifth International Workshop on Femtosecond Technology (FST’98), H. Yajima, F. Saito, eds. (Femtosecond Technology Research Association, Tsukuba, Japan, 1998), p. 120.

Abramson, N. H.

Alfano, R. R.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Andersson-Engels, S.

Berg, R.

De Silvestri, S.

Devaux, F.

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

Duguay, M. A.

Duncan, M. D.

Fujimoto, J. G.

Hebden, J. C.

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Jarlman, O.

Jonusauskas, G.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” in Abstracts of the Fifth International Workshop on Femtosecond Technology (FST’98), H. Yajima, F. Saito, eds. (Femtosecond Technology Research Association, Tsukuba, Japan, 1998), p. 120.

Kruger, R. A.

Lantz, E.

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Mahon, R.

Margolis, R.

Matsumoto, H.

T. Yasui, K. Minoshima, H. Matsumoto, “Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate,” Appl. Opt. 39, 65–71 (2000).
[CrossRef]

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” in Abstracts of the Fifth International Workshop on Femtosecond Technology (FST’98), H. Yajima, F. Saito, eds. (Femtosecond Technology Research Association, Tsukuba, Japan, 1998), p. 120.

Mattick, A. T.

Minoshima, K.

T. Yasui, K. Minoshima, H. Matsumoto, “Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate,” Appl. Opt. 39, 65–71 (2000).
[CrossRef]

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” in Abstracts of the Fifth International Workshop on Femtosecond Technology (FST’98), H. Yajima, F. Saito, eds. (Femtosecond Technology Research Association, Tsukuba, Japan, 1998), p. 120.

Moon, J. A.

Oseroff, A.

Puliafito, C. A.

Reintjes, J.

Rullière, C.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” in Abstracts of the Fifth International Workshop on Femtosecond Technology (FST’98), H. Yajima, F. Saito, eds. (Femtosecond Technology Research Association, Tsukuba, Japan, 1998), p. 120.

Spears, K. G.

Svanberg, S.

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Wong, K. S.

Yagi, T.

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

Yasui, T.

T. Yasui, K. Minoshima, H. Matsumoto, “Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate,” Appl. Opt. 39, 65–71 (2000).
[CrossRef]

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” in Abstracts of the Fifth International Workshop on Femtosecond Technology (FST’98), H. Yajima, F. Saito, eds. (Femtosecond Technology Research Association, Tsukuba, Japan, 1998), p. 120.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Zhang, Z.

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

Appl. Opt. (4)

Jpn. J. Appl. Phys. (1)

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

Opt. Commun. (1)

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

Opt. Eng. (1)

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

Opt. Lett. (3)

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Other (1)

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” in Abstracts of the Fifth International Workshop on Femtosecond Technology (FST’98), H. Yajima, F. Saito, eds. (Femtosecond Technology Research Association, Tsukuba, Japan, 1998), p. 120.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for microscopic time-resolved 2D imaging system using fs-amp OKG. BS, beam splitter; OL, objective lens (magnification = 20, numerical aperture = 0.4); P, polarizer; OKG material, optical Kerr gate material; A, analyzer; BPF, bandpass filter; CCD, charge-coupled device camera; L1, L2, L3 and L4, lenses with focal lengths of 200, 100, 100, and 500 mm, respectively. a = 250 mm, b = 125 mm, c = 475 mm, d = 100 mm, e = 100 mm, f = 550 mm, g = 875 mm.

Fig. 2
Fig. 2

Temporal behavior of fs-amp OKG signal at a probe wavelength of 670 nm. Transmittance is normalized to the peak value.

Fig. 3
Fig. 3

Transverse imaging resolution of the proposed system. Contrast curve of the time-resolved image is compared with that of the reference image without fs-amp OKG with regard to spatial frequency and resolution. Line is a guide for the eye.

Fig. 4
Fig. 4

(a) Reference image and (b) time-resolved image of the Ronchi ruling (600 line/mm). Interval between the patterns is 1.7 µm.

Metrics