Abstract

An experimental technique for single-shot generation of the sonogram of an ultrashort laser pulse is demonstrated. The method is based on the time gating of a spectrally decomposed test signal, transferring its spectral phase into a spatial phase, and the spatial filtering of the signal to produce a sonogram. The technique is evaluated experimentally, producing sonograms for linearly and nonlinearly chirped femtosecond laser pulses. The single-shot technique permits reconstruction of ultrashort pulse complex amplitude profiles and is useful for showing the signal in real time.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Kane, R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
    [CrossRef] [PubMed]
  2. K. W. DeLong, R. Trebino, J. Hunter, W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
    [CrossRef]
  3. J. L. A. Chilla, O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991).
    [CrossRef] [PubMed]
  4. J.-K. Rhee, T. S. Sosnowski, A.-C. Tien, T. B. Norris, “Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique,” J. Opt. Soc. Am. B 13, 1780–1785 (1996).
    [CrossRef]
  5. V. Wong, I. A. Walmsley, “Ultrashort pulse characterization from dynamic spectrograms by iterative phase retrieval,” J. Opt. Soc. Am. B 14, 944–949 (1997).
    [CrossRef]
  6. K. W. DeLong, R. Trebino, D. N. Fittinghoff, C. L. Ladera, “Review of time-frequency domain concepts with application to ultrashort laser pulses,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, C. P. Barty, F. W. Wise, eds., Proc. SPIE2377, 44–51 (1995).
    [CrossRef]
  7. D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1599 (1999).
    [CrossRef]
  8. M. B. Danailov, I. P. Christov, “Time–space shaping of light pulses by Fourier optical processing,” J. Mod. Opt. 36, 725–731 (1989).
    [CrossRef]
  9. P.-C. Sun, Y. T. Mazurenko, Y. Fainman, “Femtosecond pulse imaging: ultrafast optical oscilloscope,” J. Opt. Soc. Am. A 14, 1159–1170 (1997).
    [CrossRef]
  10. K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1991).
    [CrossRef]
  11. H. O. Bartelt, K.-H. Brenner, A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
    [CrossRef]

1999 (1)

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1599 (1999).
[CrossRef]

1997 (2)

1996 (1)

1994 (1)

1993 (1)

1991 (2)

J. L. A. Chilla, O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991).
[CrossRef] [PubMed]

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1991).
[CrossRef]

1989 (1)

M. B. Danailov, I. P. Christov, “Time–space shaping of light pulses by Fourier optical processing,” J. Mod. Opt. 36, 725–731 (1989).
[CrossRef]

1980 (1)

H. O. Bartelt, K.-H. Brenner, A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[CrossRef]

Bartelt, H. O.

H. O. Bartelt, K.-H. Brenner, A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[CrossRef]

Brenner, K.-H.

H. O. Bartelt, K.-H. Brenner, A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[CrossRef]

Chilla, J. L. A.

Christov, I. P.

M. B. Danailov, I. P. Christov, “Time–space shaping of light pulses by Fourier optical processing,” J. Mod. Opt. 36, 725–731 (1989).
[CrossRef]

Danailov, M. B.

M. B. Danailov, I. P. Christov, “Time–space shaping of light pulses by Fourier optical processing,” J. Mod. Opt. 36, 725–731 (1989).
[CrossRef]

DeLong, K. W.

K. W. DeLong, R. Trebino, J. Hunter, W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
[CrossRef]

K. W. DeLong, R. Trebino, D. N. Fittinghoff, C. L. Ladera, “Review of time-frequency domain concepts with application to ultrashort laser pulses,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, C. P. Barty, F. W. Wise, eds., Proc. SPIE2377, 44–51 (1995).
[CrossRef]

Ema, K.

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1991).
[CrossRef]

Fainman, Y.

Fittinghoff, D. N.

K. W. DeLong, R. Trebino, D. N. Fittinghoff, C. L. Ladera, “Review of time-frequency domain concepts with application to ultrashort laser pulses,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, C. P. Barty, F. W. Wise, eds., Proc. SPIE2377, 44–51 (1995).
[CrossRef]

Hunter, J.

Kane, D. J.

Kuwata-Gonokami, M.

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1991).
[CrossRef]

Ladera, C. L.

K. W. DeLong, R. Trebino, D. N. Fittinghoff, C. L. Ladera, “Review of time-frequency domain concepts with application to ultrashort laser pulses,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, C. P. Barty, F. W. Wise, eds., Proc. SPIE2377, 44–51 (1995).
[CrossRef]

Lohmann, A. W.

H. O. Bartelt, K.-H. Brenner, A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[CrossRef]

Martinez, O. E.

Mazurenko, Y. T.

Norris, T. B.

Reid, D. T.

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1599 (1999).
[CrossRef]

Rhee, J.-K.

Shimizu, F.

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1991).
[CrossRef]

Sosnowski, T. S.

Sun, P.-C.

Tien, A.-C.

Trebino, R.

K. W. DeLong, R. Trebino, J. Hunter, W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
[CrossRef]

D. J. Kane, R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
[CrossRef] [PubMed]

K. W. DeLong, R. Trebino, D. N. Fittinghoff, C. L. Ladera, “Review of time-frequency domain concepts with application to ultrashort laser pulses,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, C. P. Barty, F. W. Wise, eds., Proc. SPIE2377, 44–51 (1995).
[CrossRef]

Walmsley, I. A.

White, W. E.

Wong, V.

Appl. Phys. Lett. (1)

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1599 (1999).
[CrossRef]

J. Mod. Opt. (1)

M. B. Danailov, I. P. Christov, “Time–space shaping of light pulses by Fourier optical processing,” J. Mod. Opt. 36, 725–731 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

H. O. Bartelt, K.-H. Brenner, A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[CrossRef]

Opt. Lett. (2)

Other (1)

K. W. DeLong, R. Trebino, D. N. Fittinghoff, C. L. Ladera, “Review of time-frequency domain concepts with application to ultrashort laser pulses,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, C. P. Barty, F. W. Wise, eds., Proc. SPIE2377, 44–51 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the sonogram-generation apparatus. The spectral phase of the input pulse s(t) is converted to the spatial phase of the wave front (x) by gating of the spectrally decomposed signal with time-domain pulse p(t). A spatial processor generates a sonogram of the input signal that is converted to the spatial domain.

Fig. 2
Fig. 2

Setup for spectral decomposition. The solid curves around the back focal plane of the lens illustrate the rotation of the SDW; the part of the wave front sampled by gating pulse p(t) is highlighted with a shaded rectangle.

Fig. 3
Fig. 3

Spatial sonogram processor. The cylindrical and spherical lenses, both of focal length F 1, are assembled to provide imaging in the y′ axis and a Fourier transform in the x′ axis.

Fig. 4
Fig. 4

Experimental setup. The spectrally decomposed signal pulse (Fig. 2) is mixed with the gating pulse in a 0.25-mm-thick BBO crystal, generating a sum-frequency field whose spatial phase is a replica of the spectral phase of the signal.

Fig. 5
Fig. 5

Experimental results for the mode-locked oscillator pulses. Top, results for the pulse from the output of the oscillator: (a) sonogram snapshot, (b) spectral phase and amplitude, and (c) reconstructed time-domain signal profile. Bottom, results for the pulse stretched by a grating pair: (d) sonogram snapshot, (e) spectral phase and amplitude, and (f) reconstructed time-domain signal profile.

Fig. 6
Fig. 6

Comparison of the measured (dashed curve) cross correlation between signal pulses used to generate the sonograms of Figs. 5(a) and 5(c) and the cross correlation generated numerically from the reconstructed pulses of Figs. 5(c) and 5(f) (solid curve).

Fig. 7
Fig. 7

Sonogram snapshots illustrating the optimization of the compressor of the regenerative amplifier: (a) positively chirped, (b) compressed, (c) negatively chirped pulses.

Fig. 8
Fig. 8

Temporal profile of the pulse from the regenerative amplifier for optimum compressor grating separation [corresponds to the sonogram shown in Fig. 7(b)].

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

s˜ν= stexp-i2πνtdt,
Wt, ν= s˜νGν-νexp-i2πνtdν2,
Ŵt, ν= stĜt-texpi2πνtdt2,
s˜ν=fνexpiφν,
s˜ν=fνexpiφνfνexpiφν+φ˙νν-ν,
Wt, ν=|fν|2 Gν-νexpi2πφ˙ν/2π-tνdν2.
φν= φ˙νdν,
|s˜ν|2   Wt, νdt.
UFt, x  s˜axexp-i2πν0texp-i2πaxt,
UFt, x  faxexpiφax×exp-i2πν0texp-i2πaxt.
Ix, y   s˜axG(x-y)exp-i2πbxxdx2,
Ix, y   |pt|2Ix+a/bt, ydt,
Usum  UFptexp-i2πν0t=pts˜axexp-i2π2ν0+axt.
Ix, y=   Usumx, tGx-y×exp-i2πbxxδy-ydydx2dt,
Ix, y= dt|pt|2 s˜axGx-yexp-i2πxbx+a/btdx2.

Metrics