Abstract

We show that all the structural properties of periodic dielectric multilayers can be accurately determined by a combined measurement of the transmission as a function of the wavelength and of the reflection as a function of the angle of incidence when the wavelength of the incident light is fixed. This method is applied to determine the structural properties of two commercial dielectric mirrors, and the results obtained are compared with a measurement of the same structural parameters by use of another technique based on the more standard optical guiding method.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, “Coatings and filters,” in Handbook of Optical Constants of Solids II, E. Palik, ed. (Academic, Boston, 1991).
  2. C. M. Bowden, J. P. Dowling, H. O. Everitt, eds., Special Issue on Development and applications of materials exhibiting photonic band gaps, J. Opt. Soc. Am. B10 (1993).
  3. C. M. Soukoulis, Photonic Band Gap Materials, Vol. 315 of the Proceedings of the NATO Advanced Study Institute (North Atlantic Treaty Organization, Brussels, Belgium, 1996).
    [CrossRef]
  4. C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century, Vol. 563 of the Proceedings of the NATO Advanced Study Institute (North Atlantic Treaty Organization, Brussels, Belgium, 2001).
    [CrossRef]
  5. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  6. E. Yablonovitch, “Engineering omnidirectional external-reflectivity spectra from one-dimensional layered interference filters,” Opt. Lett. 23, 1648–1649 (1998).
    [CrossRef]
  7. J. N. Winn, Y. Fink, S. Fan, J. D. Joannopolous, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
    [CrossRef]
  8. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
    [CrossRef]
  9. Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
    [CrossRef]
  10. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).
  11. G. D’Aguanno, M. Centini, C. Sibilia, M. Betrolotti, M. Scalora, M. J. Bloemer, C. M. Bowden, “Enhancement of χ(2) cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
    [CrossRef]
  12. Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001).
    [CrossRef]
  13. J. Martorell, R. Vilaseca, R. Corbalan, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
    [CrossRef]
  14. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed SHG in nonlinear 1-D periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
    [CrossRef]
  15. M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
    [CrossRef] [PubMed]
  16. C. Cojocaru, J. Martorell, R. Vilaseca, J. Trull, E. Fazio, “Active reflection via a phase-insensitive quadratic nonlinear interaction within a microcavity,” Appl. Phys. Lett. 74, 504–506 (1999).
    [CrossRef]
  17. J. Martorell, N. M. Lawandy, “Observation of inhibited spontaneous emission in 3-D periodic dielectric structures,” Phys. Rev. Lett. 65, 1877–1880 (1990).
    [CrossRef] [PubMed]
  18. J. Trull, R. Vilaseca, J. Martorell, R. Corbalán, “Second-harmonic generation in local modes of a truncated periodic structure,” Opt. Lett. 20, 1746–1748 (1995).
    [CrossRef] [PubMed]
  19. R. M. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1977).
  20. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” J. Phys. E 9, 1002 (1976).
    [CrossRef]
  21. D. P. Arndt, R. M. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn, “Multiple determination of the optical constants of thin-film coating materials,” Appl. Opt. 23, 3571–3596 (1984).
    [CrossRef] [PubMed]
  22. J. Massaneda, F. Flory, S. Bosch, J. Martorell, S. Monneret, “Multispectral measurements of slightly anisotropic thin films by guided optics method” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, pp. 674–684 (1996).
    [CrossRef]

2001

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001).
[CrossRef]

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
[CrossRef]

1999

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).

C. Cojocaru, J. Martorell, R. Vilaseca, J. Trull, E. Fazio, “Active reflection via a phase-insensitive quadratic nonlinear interaction within a microcavity,” Appl. Phys. Lett. 74, 504–506 (1999).
[CrossRef]

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

G. D’Aguanno, M. Centini, C. Sibilia, M. Betrolotti, M. Scalora, M. J. Bloemer, C. M. Bowden, “Enhancement of χ(2) cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
[CrossRef]

1998

1997

J. Martorell, R. Vilaseca, R. Corbalan, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed SHG in nonlinear 1-D periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

1995

1994

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

1990

J. Martorell, N. M. Lawandy, “Observation of inhibited spontaneous emission in 3-D periodic dielectric structures,” Phys. Rev. Lett. 65, 1877–1880 (1990).
[CrossRef] [PubMed]

1984

1976

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” J. Phys. E 9, 1002 (1976).
[CrossRef]

Arndt, D. P.

Azzam, R. M.

Bashara, N. M.

R. M. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1977).

Bennett, J. M.

Betrolotti, M.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).

G. D’Aguanno, M. Centini, C. Sibilia, M. Betrolotti, M. Scalora, M. J. Bloemer, C. M. Bowden, “Enhancement of χ(2) cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
[CrossRef]

Bloemer, M. J.

G. D’Aguanno, M. Centini, C. Sibilia, M. Betrolotti, M. Scalora, M. J. Bloemer, C. M. Bowden, “Enhancement of χ(2) cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
[CrossRef]

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed SHG in nonlinear 1-D periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Borgogno, J. P.

Bosch, S.

J. Massaneda, F. Flory, S. Bosch, J. Martorell, S. Monneret, “Multispectral measurements of slightly anisotropic thin films by guided optics method” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, pp. 674–684 (1996).
[CrossRef]

Bowden, C. M.

G. D’Aguanno, M. Centini, C. Sibilia, M. Betrolotti, M. Scalora, M. J. Bloemer, C. M. Bowden, “Enhancement of χ(2) cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
[CrossRef]

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed SHG in nonlinear 1-D periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Carniglia, C. K.

Case, W. E.

Centini, M.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).

G. D’Aguanno, M. Centini, C. Sibilia, M. Betrolotti, M. Scalora, M. J. Bloemer, C. M. Bowden, “Enhancement of χ(2) cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
[CrossRef]

Chigrin, D. N.

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Cojocaru, C.

C. Cojocaru, J. Martorell, R. Vilaseca, J. Trull, E. Fazio, “Active reflection via a phase-insensitive quadratic nonlinear interaction within a microcavity,” Appl. Phys. Lett. 74, 504–506 (1999).
[CrossRef]

Corbalan, R.

J. Martorell, R. Vilaseca, R. Corbalan, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[CrossRef]

Corbalán, R.

D’Aguanno, G.

G. D’Aguanno, M. Centini, C. Sibilia, M. Betrolotti, M. Scalora, M. J. Bloemer, C. M. Bowden, “Enhancement of χ(2) cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
[CrossRef]

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).

Dobrowolski, J. A.

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed SHG in nonlinear 1-D periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Dumeige, Y.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001).
[CrossRef]

Fan, S.

Fazio, E.

C. Cojocaru, J. Martorell, R. Vilaseca, J. Trull, E. Fazio, “Active reflection via a phase-insensitive quadratic nonlinear interaction within a microcavity,” Appl. Phys. Lett. 74, 504–506 (1999).
[CrossRef]

Fink, Y.

Flory, F.

J. Massaneda, F. Flory, S. Bosch, J. Martorell, S. Monneret, “Multispectral measurements of slightly anisotropic thin films by guided optics method” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, pp. 674–684 (1996).
[CrossRef]

Gaponenko, S. V.

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Gibson, U. J.

Ha, Y.-K.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
[CrossRef]

Haus, J. W.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed SHG in nonlinear 1-D periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Ho, F. C.

Hodgkin, V. A.

Joannopolous, J. D.

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Kee, C.-S.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
[CrossRef]

Kim, J.-E.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
[CrossRef]

Klapp, W. P.

Lavrinenko, A. V.

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Lawandy, N. M.

J. Martorell, N. M. Lawandy, “Observation of inhibited spontaneous emission in 3-D periodic dielectric structures,” Phys. Rev. Lett. 65, 1877–1880 (1990).
[CrossRef] [PubMed]

Lazarides, B.

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” J. Phys. E 9, 1002 (1976).
[CrossRef]

Lee, J.-C.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
[CrossRef]

Levenson, J. A.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001).
[CrossRef]

Lim, H.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
[CrossRef]

Macleod, H. A.

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed SHG in nonlinear 1-D periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Martorell, J.

C. Cojocaru, J. Martorell, R. Vilaseca, J. Trull, E. Fazio, “Active reflection via a phase-insensitive quadratic nonlinear interaction within a microcavity,” Appl. Phys. Lett. 74, 504–506 (1999).
[CrossRef]

J. Martorell, R. Vilaseca, R. Corbalan, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[CrossRef]

J. Trull, R. Vilaseca, J. Martorell, R. Corbalán, “Second-harmonic generation in local modes of a truncated periodic structure,” Opt. Lett. 20, 1746–1748 (1995).
[CrossRef] [PubMed]

J. Martorell, N. M. Lawandy, “Observation of inhibited spontaneous emission in 3-D periodic dielectric structures,” Phys. Rev. Lett. 65, 1877–1880 (1990).
[CrossRef] [PubMed]

J. Massaneda, F. Flory, S. Bosch, J. Martorell, S. Monneret, “Multispectral measurements of slightly anisotropic thin films by guided optics method” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, pp. 674–684 (1996).
[CrossRef]

Massaneda, J.

J. Massaneda, F. Flory, S. Bosch, J. Martorell, S. Monneret, “Multispectral measurements of slightly anisotropic thin films by guided optics method” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, pp. 674–684 (1996).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Monneret, S.

J. Massaneda, F. Flory, S. Bosch, J. Martorell, S. Monneret, “Multispectral measurements of slightly anisotropic thin films by guided optics method” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, pp. 674–684 (1996).
[CrossRef]

Nefedov, I.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).

Park, H. Y.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
[CrossRef]

Pelletier, E.

Purvis, M. K.

Quinn, D. M.

Sagnes, I.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001).
[CrossRef]

Sauvage, S.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001).
[CrossRef]

Scalora, M.

G. D’Aguanno, M. Centini, C. Sibilia, M. Betrolotti, M. Scalora, M. J. Bloemer, C. M. Bowden, “Enhancement of χ(2) cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
[CrossRef]

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed SHG in nonlinear 1-D periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Sibilia, C.

G. D’Aguanno, M. Centini, C. Sibilia, M. Betrolotti, M. Scalora, M. J. Bloemer, C. M. Bowden, “Enhancement of χ(2) cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
[CrossRef]

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).

Soukoulis, C. M.

C. M. Soukoulis, Photonic Band Gap Materials, Vol. 315 of the Proceedings of the NATO Advanced Study Institute (North Atlantic Treaty Organization, Brussels, Belgium, 1996).
[CrossRef]

C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century, Vol. 563 of the Proceedings of the NATO Advanced Study Institute (North Atlantic Treaty Organization, Brussels, Belgium, 2001).
[CrossRef]

Strome, D. H.

Swenson, R.

Temple, P. A.

Thonn, T. F.

Trull, J.

C. Cojocaru, J. Martorell, R. Vilaseca, J. Trull, E. Fazio, “Active reflection via a phase-insensitive quadratic nonlinear interaction within a microcavity,” Appl. Phys. Lett. 74, 504–506 (1999).
[CrossRef]

J. Trull, R. Vilaseca, J. Martorell, R. Corbalán, “Second-harmonic generation in local modes of a truncated periodic structure,” Opt. Lett. 20, 1746–1748 (1995).
[CrossRef] [PubMed]

Tuttle Hart, T.

Vidakovic, P.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001).
[CrossRef]

Vilaseca, R.

C. Cojocaru, J. Martorell, R. Vilaseca, J. Trull, E. Fazio, “Active reflection via a phase-insensitive quadratic nonlinear interaction within a microcavity,” Appl. Phys. Lett. 74, 504–506 (1999).
[CrossRef]

J. Martorell, R. Vilaseca, R. Corbalan, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[CrossRef]

J. Trull, R. Vilaseca, J. Martorell, R. Corbalán, “Second-harmonic generation in local modes of a truncated periodic structure,” Opt. Lett. 20, 1746–1748 (1995).
[CrossRef] [PubMed]

Viswanathan, R.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed SHG in nonlinear 1-D periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Winn, J. N.

J. N. Winn, Y. Fink, S. Fan, J. D. Joannopolous, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Yablonovitch, E.

Yang, Y.-C.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
[CrossRef]

Yarotsky, D. A.

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. A

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Appl. Phys. Lett.

Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
[CrossRef]

C. Cojocaru, J. Martorell, R. Vilaseca, J. Trull, E. Fazio, “Active reflection via a phase-insensitive quadratic nonlinear interaction within a microcavity,” Appl. Phys. Lett. 74, 504–506 (1999).
[CrossRef]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001).
[CrossRef]

J. Martorell, R. Vilaseca, R. Corbalan, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[CrossRef]

J. Phys. E

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” J. Phys. E 9, 1002 (1976).
[CrossRef]

Opt. Lett.

Phys. Rev.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Betrolotti, M. J. Bloemer, C. M. Bowden, I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. 60, 4891–4898 (1999).

Phys. Rev. A

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed SHG in nonlinear 1-D periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Phys. Rev. Lett.

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

J. Martorell, N. M. Lawandy, “Observation of inhibited spontaneous emission in 3-D periodic dielectric structures,” Phys. Rev. Lett. 65, 1877–1880 (1990).
[CrossRef] [PubMed]

Other

R. M. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1977).

J. A. Dobrowolski, “Coatings and filters,” in Handbook of Optical Constants of Solids II, E. Palik, ed. (Academic, Boston, 1991).

C. M. Bowden, J. P. Dowling, H. O. Everitt, eds., Special Issue on Development and applications of materials exhibiting photonic band gaps, J. Opt. Soc. Am. B10 (1993).

C. M. Soukoulis, Photonic Band Gap Materials, Vol. 315 of the Proceedings of the NATO Advanced Study Institute (North Atlantic Treaty Organization, Brussels, Belgium, 1996).
[CrossRef]

C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century, Vol. 563 of the Proceedings of the NATO Advanced Study Institute (North Atlantic Treaty Organization, Brussels, Belgium, 2001).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

J. Massaneda, F. Flory, S. Bosch, J. Martorell, S. Monneret, “Multispectral measurements of slightly anisotropic thin films by guided optics method” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, pp. 674–684 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic representation of a quarter-wavelength Bragg reflector with N periods and with refractive indices n h and n l and corresponding thicknesses l l and l h . The refraction index of the substrate is n s . (b) Reflectance as a function of the relative wavelength (λ o /λ) for a structure made of 25 layers (N = 12), with refractive indices n l = 1.4, n h = 1.8 and substrate n s = 1.53.

Fig. 2
Fig. 2

Relative gap width (measured at 90% reflectance) as a function of the refractive-index ratio (n h /n l ). The point indicated corresponds to the value found for one of the structures measured experimentally (Section 3).

Fig. 3
Fig. 3

Measured transmittance as a function of the incident wavelength at normal incidence (dotted curve) for the first mirror considered in Section 3. The solid curve is the curve obtained numerically with the parameters found for the structure as explained in Section 3.

Fig. 4
Fig. 4

Experimental setup for the measurement of the reflectance as a function of the incidence angle. PD, photodetector; Pol, polarizer; BS, beam splitter; RS, rotating stage; QWBR, structure to be measured; D, diaphragm.

Fig. 5
Fig. 5

(a) Measured reflectance for the mirror considered in Fig. 3 as a function of the angle of incidence at a wavelength of 514.5 nm (dotted curve). The solid curves are obtained by when the index ratio was set to 1.345 and the number of periods to N = 13. The values for n l are (a) 1.46, (b) 1.47, (c) 1.48, (d) 1.49, and (e) 1.6. The values of the corresponding lengths are obtained in each case through Eq. (2). (b) The same as in 5(a), for λ = 532 nm.

Fig. 6
Fig. 6

(a) Measured transmittance as a function of the incident wavelength at normal incidence (dotted curve) for the second mirror considered in Section 3. The solid curve is the curve obtained with the parameters found for the structure as explained in Section 3. (b) Measured reflectance for the mirror considered in 6(a) as a function of the angle of incidence at λ = 1064 nm (dotted curve). The solid curves are obtained by setting the index ratio to 1.331 and the number of periods N = 15. The values for n l are (a) 1.41, (b) 1.44, (c) 1.45, and (d) 1.5. The values of the corresponding lengths are obtained in each case through Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

nhlh+nlll=λo/2.
nhlh=nlll=λo/4.

Metrics