Abstract

To demonstrate the potential of the cavity ringdown technique in mid-infrared spectroscopy of thin film samples, we measured absorption losses in a C60 film on a BaF2 substrate using a tunable optical parametric amplifier source. With a Brewster angle sample geometry, we achieved a fractional loss sensitivity as small as 1.3 × 10-7 with 1.5 cm-1 resolution, an improvement in sensitivity of 2 orders of magnitude compared to standard Fourier transform infrared methods. At an absorption sensitivity of 5 × 10-7, spectra of several C60 overtone lines were recorded.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Inst. 59, 2544–2551 (1988).
    [CrossRef]
  2. J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity ring-down laser absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
    [CrossRef]
  3. D. Romanini, A. A. Kachanov, F. Stoeckal, “Cavity ringdown spectroscopy; broad band absolute measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
    [CrossRef]
  4. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Inst. 71, 347–353 (2000).
    [CrossRef]
  5. F. Ito, T. Nakanaga, “A jet-cooled infrared spectrum of the formic acid dimer by cavity ringdown spectroscopy,” Chem. Phys. Lett. 318, 571–577 (2000).
    [CrossRef]
  6. J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317, 631–636 (2000).
    [CrossRef]
  7. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
    [CrossRef]
  8. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Inst. 68, 2978–2989 (1997).
    [CrossRef]
  9. D. Kleine, J. Lauterbach, K. Kleinermanns, P. Hering, “Cavity ringdown spectroscopy of molecularly thin iodine layers,” Appl. Phys. B 72, 249–252 (2001).
    [CrossRef]
  10. S. L. Logunov, “Cavity ringdown detection of losses in thin films in the telecommunication wavelength window,” Appl. Opt. 40, 1570–1573 (2001).
    [CrossRef]
  11. R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
    [CrossRef]
  12. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  13. M. Born, E. Wolf, Principles of Optics, (Pergamon, New York, 1959), pp. 322–326.
  14. M. S. Dresselhaus, G. Dresselhaus, P. K. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, Calif., 1996).
  15. M. E. Thomas, W. J. Tropf, “Barium Fluoride (BaF2),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, San Diego, Calif., 1998), pp. 683–699.

2001 (2)

D. Kleine, J. Lauterbach, K. Kleinermanns, P. Hering, “Cavity ringdown spectroscopy of molecularly thin iodine layers,” Appl. Phys. B 72, 249–252 (2001).
[CrossRef]

S. L. Logunov, “Cavity ringdown detection of losses in thin films in the telecommunication wavelength window,” Appl. Opt. 40, 1570–1573 (2001).
[CrossRef]

2000 (3)

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Inst. 71, 347–353 (2000).
[CrossRef]

F. Ito, T. Nakanaga, “A jet-cooled infrared spectrum of the formic acid dimer by cavity ringdown spectroscopy,” Chem. Phys. Lett. 318, 571–577 (2000).
[CrossRef]

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

1999 (1)

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

1997 (3)

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Inst. 68, 2978–2989 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckal, “Cavity ringdown spectroscopy; broad band absolute measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

1995 (2)

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity ring-down laser absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Inst. 59, 2544–2551 (1988).
[CrossRef]

Biennier, L.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

Booth, J. P.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, (Pergamon, New York, 1959), pp. 322–326.

Byer, R. L.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Inst. 71, 347–353 (2000).
[CrossRef]

Collier, C. P.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity ring-down laser absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

Cunge, G.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Inst. 59, 2544–2551 (1988).
[CrossRef]

Dresselhaus, G.

M. S. Dresselhaus, G. Dresselhaus, P. K. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, Calif., 1996).

Dresselhaus, M. S.

M. S. Dresselhaus, G. Dresselhaus, P. K. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, Calif., 1996).

Eklund, P. K.

M. S. Dresselhaus, G. Dresselhaus, P. K. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, Calif., 1996).

Engeln, R.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

Harb, C. C.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Inst. 71, 347–353 (2000).
[CrossRef]

Hering, P.

D. Kleine, J. Lauterbach, K. Kleinermanns, P. Hering, “Cavity ringdown spectroscopy of molecularly thin iodine layers,” Appl. Phys. B 72, 249–252 (2001).
[CrossRef]

Hudgens, J. W.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Inst. 68, 2978–2989 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
[CrossRef]

Huie, R. E.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Inst. 68, 2978–2989 (1997).
[CrossRef]

Ito, F.

F. Ito, T. Nakanaga, “A jet-cooled infrared spectrum of the formic acid dimer by cavity ringdown spectroscopy,” Chem. Phys. Lett. 318, 571–577 (2000).
[CrossRef]

Kachanov, A. A.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckal, “Cavity ringdown spectroscopy; broad band absolute measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

Kleine, D.

D. Kleine, J. Lauterbach, K. Kleinermanns, P. Hering, “Cavity ringdown spectroscopy of molecularly thin iodine layers,” Appl. Phys. B 72, 249–252 (2001).
[CrossRef]

Kleinermanns, K.

D. Kleine, J. Lauterbach, K. Kleinermanns, P. Hering, “Cavity ringdown spectroscopy of molecularly thin iodine layers,” Appl. Phys. B 72, 249–252 (2001).
[CrossRef]

Lauterbach, J.

D. Kleine, J. Lauterbach, K. Kleinermanns, P. Hering, “Cavity ringdown spectroscopy of molecularly thin iodine layers,” Appl. Phys. B 72, 249–252 (2001).
[CrossRef]

Logunov, S. L.

Meijer, G.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

Nakanaga, T.

F. Ito, T. Nakanaga, “A jet-cooled infrared spectrum of the formic acid dimer by cavity ringdown spectroscopy,” Chem. Phys. Lett. 318, 571–577 (2000).
[CrossRef]

O’Keefe, A.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity ring-down laser absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Inst. 59, 2544–2551 (1988).
[CrossRef]

Paldus, B. A.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Inst. 71, 347–353 (2000).
[CrossRef]

Paul, J. B.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity ring-down laser absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

Pipino, A. C. R.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Inst. 68, 2978–2989 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
[CrossRef]

Rakestraw, D. J.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity ring-down laser absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

Romanini, D.

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckal, “Cavity ringdown spectroscopy; broad band absolute measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

Saykally, R. J.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity ring-down laser absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

Scherer, J. J.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity ring-down laser absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

Spence, T. G.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Inst. 71, 347–353 (2000).
[CrossRef]

Stoeckal, F.

D. Romanini, A. A. Kachanov, F. Stoeckal, “Cavity ringdown spectroscopy; broad band absolute measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

Thomas, M. E.

M. E. Thomas, W. J. Tropf, “Barium Fluoride (BaF2),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, San Diego, Calif., 1998), pp. 683–699.

Tropf, W. J.

M. E. Thomas, W. J. Tropf, “Barium Fluoride (BaF2),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, San Diego, Calif., 1998), pp. 683–699.

van Roij, A. J. A.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

Voelkel, D.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity ring-down laser absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

von Helden, G.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

Willke, B.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Inst. 71, 347–353 (2000).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, (Pergamon, New York, 1959), pp. 322–326.

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Inst. 71, 347–353 (2000).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Kleine, J. Lauterbach, K. Kleinermanns, P. Hering, “Cavity ringdown spectroscopy of molecularly thin iodine layers,” Appl. Phys. B 72, 249–252 (2001).
[CrossRef]

Chem. Phys. Lett. (5)

F. Ito, T. Nakanaga, “A jet-cooled infrared spectrum of the formic acid dimer by cavity ringdown spectroscopy,” Chem. Phys. Lett. 318, 571–577 (2000).
[CrossRef]

J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317, 631–636 (2000).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
[CrossRef]

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity ring-down laser absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckal, “Cavity ringdown spectroscopy; broad band absolute measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

J. Chem. Phys. (2)

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Rev. Sci. Inst. (3)

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Inst. 68, 2978–2989 (1997).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Inst. 71, 347–353 (2000).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Inst. 59, 2544–2551 (1988).
[CrossRef]

Other (3)

M. Born, E. Wolf, Principles of Optics, (Pergamon, New York, 1959), pp. 322–326.

M. S. Dresselhaus, G. Dresselhaus, P. K. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, Calif., 1996).

M. E. Thomas, W. J. Tropf, “Barium Fluoride (BaF2),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, San Diego, Calif., 1998), pp. 683–699.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

FTIR spectrum of 2-µm-thick C60 film with expanded regions corresponding to overtone spectral lines to be examined with CRDS.

Fig. 2
Fig. 2

Schematic of the optical system, including the ringdown cavity, the injection and mode matching optics, and the spectrometer and detector.

Fig. 3
Fig. 3

Histogram of decay time measurements. Gaussian fit to distribution implies decay time measurement error (σ/τ) of 0.15%. This corresponds to an absorption sensitivity of 1.5 × 10-5 in a single fitted decay.

Fig. 4
Fig. 4

Losses in cavity with the substrate alone and with the sample on the substrate. The statistically calculated uncertainties in the losses are comparable with the size of the data points. The gradually decreasing losses with increasing wave number are due to the decreasing reflectivity of the cavity mirrors. The features appearing in both spectra at 1498 and 1506 cm-1 correspond to water vapor absorption lines.

Fig. 5
Fig. 5

Comparison of a CRDS spectrum of a 19-nm C60 film and an FTIR spectrum of a 2-µm C60 film. The water absorptions present in both the reference and the sample CRDS spectra have been eliminated by the referencing. The CRDS error bars correspond to a sensitivity of 5 × 10-7.

Fig. 6
Fig. 6

Spectrum of weak overtone at 1571 cm-1 in a 19-nm C60 film at a resolution of 1.5 cm-1. The peak absorption above baseline of this overtone is 4 × 10-5 and is easily resolvable.

Tables (1)

Tables Icon

Table 1 Optical Materials Useful As Thin Film CRDS Substrates

Metrics