Abstract

We discuss the problems with and the real possibilities of determining oil pollution in situ in coastal marine waters with fluorescence spectroscopy and of using artificial neural networks for data interpretation. In general, the fluorescence bands of oil and aquatic humic substance overlap. At oil concentrations in water from a few to tens of micrograms per liter, the intensity of oil fluorescence is considerably lower than that of humic substances at concentrations that typically are present in coastal waters. Therefore it is necessary to solve the problem of separating the small amount of oil fluorescence from the humic substance background in the spectrum. The problem is complicated because of possible interactions between the components and variations in the parameters of the fluorescence bands of humic substances and oil in water. Fluorescence spectra of seawater samples taken from coastal areas of the Black Sea, samples prepared in the laboratory, and numerically simulated spectra were processed with an artificial neural network. The results demonstrate the possibility of estimating oil concentrations with an accuracy of a few micrograms per liter in coastal waters also in cases in which the contribution from other organic compounds, primarily humic substances, to the fluorescence spectrum exceeds that of oil by 2 orders of magnitude and more.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Lippman, “An introduction to computing with neural nets,” IEEE Trans. Acoust. Speech Signal Process. 4(2), 4–22 (1987).
  2. D. Specht, “A general regression neural network,” IEEE Trans. Neural Netw. 2, 568–589 (1991).
    [CrossRef] [PubMed]
  3. J. Lakovich, Principles of Fluorescence Spectroscopy (Plenum, New York, 1986).
  4. A. W. Hornig, “Identification, estimation and monitoring of petroleum in marine waters by luminescence methods,” in Marine Pollution Monitoring, NBS Spec. Publ. 409, 135–144 (1974).
  5. R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley, New York, 1984).
  6. R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate, NBS Spec. Publ. SP-260 64 (National Bureau of Standards, Washington, DC, 1980).
  7. D. V. Maslov, V. V. Fadeev, A. I. Lyashenko, “A shore-based lidar for coastal seawater monitoring,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings (Workshop on LIDAR on Land and Sea), R. Reuter, ed. (EARSeL, Paris, 2001), pp. 46–52.
  8. E. M. Filippova, V. V. Chubarov, V. V. Fadeev, “New possibilities of laser fluorescence spectroscopy for diagnostics of petroleum hydrocarbons in natural water,” Can. J. Appl. Spectrosc. 38, 139–144 (1993).
  9. V. V. Fadeev, T. A. Dolenko, E. M. Filippova, V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
    [CrossRef]
  10. S. Determann, R. Reuter, P. Wagner, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 1. Method of measurement and near-surface distribution,” Deep-Sea Res. I 41, 659–675 (1994).
    [CrossRef]
  11. S. Determann, R. Reuter, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 2. Vertical profiles, and relation to water masses,” Deep-Sea Res. I 43, 345–360 (1996).
    [CrossRef]
  12. B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
    [CrossRef]
  13. D. N. Klyshko, V. V. Fadeev, “Remote determination of the admixture concentrations in water the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).
  14. V. V. Fadeev, “Possibilities of standardization of normalized fluorescent parameter as a measure of organic admixtures concentration in water and atmosphere,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schafer, K. Weber, K. Weitkamp, J.-P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 458–466 (1999).
    [CrossRef]
  15. Intergovernmental Oceanographic Comission/United Nations Environmental Programme, Manual for Monitoring Oil and Dissolved/Dispersed Petroleum Hydrocarbons in Marine Waters and on Beaches, Manuals and Guides No. 13UN Educational, Scientific, and Cultural Organization, Paris, 1984).
  16. P. Coble, S. A. Green, N. V. Blough, R. B. Gagosian, “Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy,” Nature 348, 432–435 (1990).
    [CrossRef]
  17. R. F. Chen, J. L. Bada, “The fluorescence of dissolved organic matter in seawater,” Mar. Chem. 37, 191–221 (1992).
    [CrossRef]
  18. K. Mopper, C. A. Schultz, “Fluorescence as a possible tool for studying the nature and water column distribution of DOC components,” Mar. Chem. 41, 229–238 (1993).
    [CrossRef]
  19. M. M. De Souza Sierra, O. F. X. Donard, M. Lamotte, C. Belin, M. Ewald, “Fluorescence spectroscopy of coastal and marine waters,” Mar. Chem. 47, 127–144 (1994).
    [CrossRef]
  20. P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
    [CrossRef]
  21. S. Determann, J. Lobbes, R. Reuter, J. Rullkötter, “UV fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
    [CrossRef]
  22. A. I. Simonov, V. I. Mikhailov, “Chemical pollution of thin surface layer of the World Ocean,” Tr. Gos. Okeanogr. Inst. 149, 5–16 (1979).
  23. S. Babichenko, L. Poryvkina, S. Kaitala, “Multiple-wavelength remote sensing of phytoplankton,” EARSeL Adv. Remote Sens. 3, 78–83 (1995).
  24. K. Hennig, T. de Vries, R. Paetzold, K. Jantos, E. Voss, A. Anders, “Multi sensor system for fast analyses in environmental monitoring with application in waste water treatment,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings, R. Reuter, ed. (EARSeL, Paris, 2001), Vol. 1, pp. 61–67.
  25. S. A. Dolenko, T. A. Dolenko, V. V. Fadeev, E. M. Filippova, O. V. Kozyreva, I. G. Persiantsev, “Solution of inverse problem in nonlinear laser fluorimetry of organic compounds with the use of artificial neural networks,” Pattern Recognition Image Anal. 9, 510–515 (1999).
  26. E. M. Filippova, V. V. Fadeev, V. V. Chubarov, “The origin and structure of fluorescence band from aquatic humic substances,” in 5th International Conference on Laser Application in Life Sciences, P. A. Apanasevich, N. I. Koroteev, S. G. Kruglik, V. N. Zadkov, eds., Proc. SPIE2370, 651–655 (1994).
    [CrossRef]
  27. A. G. Abroskin, S. E. Nol’de, V. V. Fadeev, V. V. Chubarov, “Laser fluorimetry determination of emulsified-dissolved oil in water,” Sov. Phys. Dokl. 33, 215–217 (1988).
  28. T. Hengstermann, R. Reuter, “Laser remote sensing of pollution of the sea: a quantitative approach,” EARSeL Adv. Remote Sens. 1, 52–60 (1992).
  29. A. N. Tikhonov, V. Ya. Arsenin, Methods of Solving Ill-Posed Problems, Scripta Series in Mathematics (Scripta Mathematics, New York, 1977).
  30. I. V. Boychuk, T. A. Dolenko, A. R. Sabirov, V. V. Fadeev, E. M. Filippova, “Study of the uniqueness and stability of the solution of inverse problem in saturation fluorimetry,” Quantum Electron. 30, 611–616 (2000).
    [CrossRef]
  31. H. R. Madala, A. G. Ivakhnenko, Inductive Learning Algorithms for Complex Systems Modeling (CRC Press, Boca Raton, Fla., 1994).

2000 (1)

I. V. Boychuk, T. A. Dolenko, A. R. Sabirov, V. V. Fadeev, E. M. Filippova, “Study of the uniqueness and stability of the solution of inverse problem in saturation fluorimetry,” Quantum Electron. 30, 611–616 (2000).
[CrossRef]

1999 (2)

S. A. Dolenko, T. A. Dolenko, V. V. Fadeev, E. M. Filippova, O. V. Kozyreva, I. G. Persiantsev, “Solution of inverse problem in nonlinear laser fluorimetry of organic compounds with the use of artificial neural networks,” Pattern Recognition Image Anal. 9, 510–515 (1999).

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

1998 (1)

S. Determann, J. Lobbes, R. Reuter, J. Rullkötter, “UV fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

1997 (1)

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

1996 (2)

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

S. Determann, R. Reuter, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 2. Vertical profiles, and relation to water masses,” Deep-Sea Res. I 43, 345–360 (1996).
[CrossRef]

1995 (1)

S. Babichenko, L. Poryvkina, S. Kaitala, “Multiple-wavelength remote sensing of phytoplankton,” EARSeL Adv. Remote Sens. 3, 78–83 (1995).

1994 (2)

M. M. De Souza Sierra, O. F. X. Donard, M. Lamotte, C. Belin, M. Ewald, “Fluorescence spectroscopy of coastal and marine waters,” Mar. Chem. 47, 127–144 (1994).
[CrossRef]

S. Determann, R. Reuter, P. Wagner, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 1. Method of measurement and near-surface distribution,” Deep-Sea Res. I 41, 659–675 (1994).
[CrossRef]

1993 (2)

E. M. Filippova, V. V. Chubarov, V. V. Fadeev, “New possibilities of laser fluorescence spectroscopy for diagnostics of petroleum hydrocarbons in natural water,” Can. J. Appl. Spectrosc. 38, 139–144 (1993).

K. Mopper, C. A. Schultz, “Fluorescence as a possible tool for studying the nature and water column distribution of DOC components,” Mar. Chem. 41, 229–238 (1993).
[CrossRef]

1992 (2)

R. F. Chen, J. L. Bada, “The fluorescence of dissolved organic matter in seawater,” Mar. Chem. 37, 191–221 (1992).
[CrossRef]

T. Hengstermann, R. Reuter, “Laser remote sensing of pollution of the sea: a quantitative approach,” EARSeL Adv. Remote Sens. 1, 52–60 (1992).

1991 (1)

D. Specht, “A general regression neural network,” IEEE Trans. Neural Netw. 2, 568–589 (1991).
[CrossRef] [PubMed]

1990 (1)

P. Coble, S. A. Green, N. V. Blough, R. B. Gagosian, “Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy,” Nature 348, 432–435 (1990).
[CrossRef]

1988 (1)

A. G. Abroskin, S. E. Nol’de, V. V. Fadeev, V. V. Chubarov, “Laser fluorimetry determination of emulsified-dissolved oil in water,” Sov. Phys. Dokl. 33, 215–217 (1988).

1987 (1)

R. P. Lippman, “An introduction to computing with neural nets,” IEEE Trans. Acoust. Speech Signal Process. 4(2), 4–22 (1987).

1979 (1)

A. I. Simonov, V. I. Mikhailov, “Chemical pollution of thin surface layer of the World Ocean,” Tr. Gos. Okeanogr. Inst. 149, 5–16 (1979).

1978 (1)

D. N. Klyshko, V. V. Fadeev, “Remote determination of the admixture concentrations in water the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).

1974 (1)

A. W. Hornig, “Identification, estimation and monitoring of petroleum in marine waters by luminescence methods,” in Marine Pollution Monitoring, NBS Spec. Publ. 409, 135–144 (1974).

A. Velapoldi, R.

R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate, NBS Spec. Publ. SP-260 64 (National Bureau of Standards, Washington, DC, 1980).

Abroskin, A. G.

A. G. Abroskin, S. E. Nol’de, V. V. Fadeev, V. V. Chubarov, “Laser fluorimetry determination of emulsified-dissolved oil in water,” Sov. Phys. Dokl. 33, 215–217 (1988).

Anders, A.

K. Hennig, T. de Vries, R. Paetzold, K. Jantos, E. Voss, A. Anders, “Multi sensor system for fast analyses in environmental monitoring with application in waste water treatment,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings, R. Reuter, ed. (EARSeL, Paris, 2001), Vol. 1, pp. 61–67.

Arsenin, V. Ya.

A. N. Tikhonov, V. Ya. Arsenin, Methods of Solving Ill-Posed Problems, Scripta Series in Mathematics (Scripta Mathematics, New York, 1977).

Babichenko, S.

S. Babichenko, L. Poryvkina, S. Kaitala, “Multiple-wavelength remote sensing of phytoplankton,” EARSeL Adv. Remote Sens. 3, 78–83 (1995).

Babin, M.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Bada, J. L.

R. F. Chen, J. L. Bada, “The fluorescence of dissolved organic matter in seawater,” Mar. Chem. 37, 191–221 (1992).
[CrossRef]

Belin, C.

M. M. De Souza Sierra, O. F. X. Donard, M. Lamotte, C. Belin, M. Ewald, “Fluorescence spectroscopy of coastal and marine waters,” Mar. Chem. 47, 127–144 (1994).
[CrossRef]

Blough, N. V.

P. Coble, S. A. Green, N. V. Blough, R. B. Gagosian, “Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy,” Nature 348, 432–435 (1990).
[CrossRef]

Boychuk, I. V.

I. V. Boychuk, T. A. Dolenko, A. R. Sabirov, V. V. Fadeev, E. M. Filippova, “Study of the uniqueness and stability of the solution of inverse problem in saturation fluorimetry,” Quantum Electron. 30, 611–616 (2000).
[CrossRef]

Chen, R. F.

R. F. Chen, J. L. Bada, “The fluorescence of dissolved organic matter in seawater,” Mar. Chem. 37, 191–221 (1992).
[CrossRef]

Chubarov, V. V.

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

E. M. Filippova, V. V. Chubarov, V. V. Fadeev, “New possibilities of laser fluorescence spectroscopy for diagnostics of petroleum hydrocarbons in natural water,” Can. J. Appl. Spectrosc. 38, 139–144 (1993).

A. G. Abroskin, S. E. Nol’de, V. V. Fadeev, V. V. Chubarov, “Laser fluorimetry determination of emulsified-dissolved oil in water,” Sov. Phys. Dokl. 33, 215–217 (1988).

E. M. Filippova, V. V. Fadeev, V. V. Chubarov, “The origin and structure of fluorescence band from aquatic humic substances,” in 5th International Conference on Laser Application in Life Sciences, P. A. Apanasevich, N. I. Koroteev, S. G. Kruglik, V. N. Zadkov, eds., Proc. SPIE2370, 651–655 (1994).
[CrossRef]

Coble, P.

P. Coble, S. A. Green, N. V. Blough, R. B. Gagosian, “Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy,” Nature 348, 432–435 (1990).
[CrossRef]

Coble, P. G.

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

De Souza Sierra, M. M.

M. M. De Souza Sierra, O. F. X. Donard, M. Lamotte, C. Belin, M. Ewald, “Fluorescence spectroscopy of coastal and marine waters,” Mar. Chem. 47, 127–144 (1994).
[CrossRef]

de Vries, T.

K. Hennig, T. de Vries, R. Paetzold, K. Jantos, E. Voss, A. Anders, “Multi sensor system for fast analyses in environmental monitoring with application in waste water treatment,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings, R. Reuter, ed. (EARSeL, Paris, 2001), Vol. 1, pp. 61–67.

Determann, S.

S. Determann, J. Lobbes, R. Reuter, J. Rullkötter, “UV fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

S. Determann, R. Reuter, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 2. Vertical profiles, and relation to water masses,” Deep-Sea Res. I 43, 345–360 (1996).
[CrossRef]

S. Determann, R. Reuter, P. Wagner, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 1. Method of measurement and near-surface distribution,” Deep-Sea Res. I 41, 659–675 (1994).
[CrossRef]

Dolenko, S. A.

S. A. Dolenko, T. A. Dolenko, V. V. Fadeev, E. M. Filippova, O. V. Kozyreva, I. G. Persiantsev, “Solution of inverse problem in nonlinear laser fluorimetry of organic compounds with the use of artificial neural networks,” Pattern Recognition Image Anal. 9, 510–515 (1999).

Dolenko, T. A.

I. V. Boychuk, T. A. Dolenko, A. R. Sabirov, V. V. Fadeev, E. M. Filippova, “Study of the uniqueness and stability of the solution of inverse problem in saturation fluorimetry,” Quantum Electron. 30, 611–616 (2000).
[CrossRef]

S. A. Dolenko, T. A. Dolenko, V. V. Fadeev, E. M. Filippova, O. V. Kozyreva, I. G. Persiantsev, “Solution of inverse problem in nonlinear laser fluorimetry of organic compounds with the use of artificial neural networks,” Pattern Recognition Image Anal. 9, 510–515 (1999).

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

Donard, O. F. X.

M. M. De Souza Sierra, O. F. X. Donard, M. Lamotte, C. Belin, M. Ewald, “Fluorescence spectroscopy of coastal and marine waters,” Mar. Chem. 47, 127–144 (1994).
[CrossRef]

Ewald, M.

M. M. De Souza Sierra, O. F. X. Donard, M. Lamotte, C. Belin, M. Ewald, “Fluorescence spectroscopy of coastal and marine waters,” Mar. Chem. 47, 127–144 (1994).
[CrossRef]

Fadeev, V. V.

I. V. Boychuk, T. A. Dolenko, A. R. Sabirov, V. V. Fadeev, E. M. Filippova, “Study of the uniqueness and stability of the solution of inverse problem in saturation fluorimetry,” Quantum Electron. 30, 611–616 (2000).
[CrossRef]

S. A. Dolenko, T. A. Dolenko, V. V. Fadeev, E. M. Filippova, O. V. Kozyreva, I. G. Persiantsev, “Solution of inverse problem in nonlinear laser fluorimetry of organic compounds with the use of artificial neural networks,” Pattern Recognition Image Anal. 9, 510–515 (1999).

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

E. M. Filippova, V. V. Chubarov, V. V. Fadeev, “New possibilities of laser fluorescence spectroscopy for diagnostics of petroleum hydrocarbons in natural water,” Can. J. Appl. Spectrosc. 38, 139–144 (1993).

A. G. Abroskin, S. E. Nol’de, V. V. Fadeev, V. V. Chubarov, “Laser fluorimetry determination of emulsified-dissolved oil in water,” Sov. Phys. Dokl. 33, 215–217 (1988).

D. N. Klyshko, V. V. Fadeev, “Remote determination of the admixture concentrations in water the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).

V. V. Fadeev, “Possibilities of standardization of normalized fluorescent parameter as a measure of organic admixtures concentration in water and atmosphere,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schafer, K. Weber, K. Weitkamp, J.-P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 458–466 (1999).
[CrossRef]

D. V. Maslov, V. V. Fadeev, A. I. Lyashenko, “A shore-based lidar for coastal seawater monitoring,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings (Workshop on LIDAR on Land and Sea), R. Reuter, ed. (EARSeL, Paris, 2001), pp. 46–52.

E. M. Filippova, V. V. Fadeev, V. V. Chubarov, “The origin and structure of fluorescence band from aquatic humic substances,” in 5th International Conference on Laser Application in Life Sciences, P. A. Apanasevich, N. I. Koroteev, S. G. Kruglik, V. N. Zadkov, eds., Proc. SPIE2370, 651–655 (1994).
[CrossRef]

Filippova, E. M.

I. V. Boychuk, T. A. Dolenko, A. R. Sabirov, V. V. Fadeev, E. M. Filippova, “Study of the uniqueness and stability of the solution of inverse problem in saturation fluorimetry,” Quantum Electron. 30, 611–616 (2000).
[CrossRef]

S. A. Dolenko, T. A. Dolenko, V. V. Fadeev, E. M. Filippova, O. V. Kozyreva, I. G. Persiantsev, “Solution of inverse problem in nonlinear laser fluorimetry of organic compounds with the use of artificial neural networks,” Pattern Recognition Image Anal. 9, 510–515 (1999).

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

E. M. Filippova, V. V. Chubarov, V. V. Fadeev, “New possibilities of laser fluorescence spectroscopy for diagnostics of petroleum hydrocarbons in natural water,” Can. J. Appl. Spectrosc. 38, 139–144 (1993).

E. M. Filippova, V. V. Fadeev, V. V. Chubarov, “The origin and structure of fluorescence band from aquatic humic substances,” in 5th International Conference on Laser Application in Life Sciences, P. A. Apanasevich, N. I. Koroteev, S. G. Kruglik, V. N. Zadkov, eds., Proc. SPIE2370, 651–655 (1994).
[CrossRef]

Gagosian, R. B.

P. Coble, S. A. Green, N. V. Blough, R. B. Gagosian, “Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy,” Nature 348, 432–435 (1990).
[CrossRef]

Green, S. A.

P. Coble, S. A. Green, N. V. Blough, R. B. Gagosian, “Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy,” Nature 348, 432–435 (1990).
[CrossRef]

Hengstermann, T.

T. Hengstermann, R. Reuter, “Laser remote sensing of pollution of the sea: a quantitative approach,” EARSeL Adv. Remote Sens. 1, 52–60 (1992).

Hennig, K.

K. Hennig, T. de Vries, R. Paetzold, K. Jantos, E. Voss, A. Anders, “Multi sensor system for fast analyses in environmental monitoring with application in waste water treatment,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings, R. Reuter, ed. (EARSeL, Paris, 2001), Vol. 1, pp. 61–67.

Heuermann, R.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Hornig, A. W.

A. W. Hornig, “Identification, estimation and monitoring of petroleum in marine waters by luminescence methods,” in Marine Pollution Monitoring, NBS Spec. Publ. 409, 135–144 (1974).

Ivakhnenko, A. G.

H. R. Madala, A. G. Ivakhnenko, Inductive Learning Algorithms for Complex Systems Modeling (CRC Press, Boca Raton, Fla., 1994).

Jantos, K.

K. Hennig, T. de Vries, R. Paetzold, K. Jantos, E. Voss, A. Anders, “Multi sensor system for fast analyses in environmental monitoring with application in waste water treatment,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings, R. Reuter, ed. (EARSeL, Paris, 2001), Vol. 1, pp. 61–67.

Kaitala, S.

S. Babichenko, L. Poryvkina, S. Kaitala, “Multiple-wavelength remote sensing of phytoplankton,” EARSeL Adv. Remote Sens. 3, 78–83 (1995).

Klyshko, D. N.

D. N. Klyshko, V. V. Fadeev, “Remote determination of the admixture concentrations in water the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).

Kozyreva, O. V.

S. A. Dolenko, T. A. Dolenko, V. V. Fadeev, E. M. Filippova, O. V. Kozyreva, I. G. Persiantsev, “Solution of inverse problem in nonlinear laser fluorimetry of organic compounds with the use of artificial neural networks,” Pattern Recognition Image Anal. 9, 510–515 (1999).

Lakovich, J.

J. Lakovich, Principles of Fluorescence Spectroscopy (Plenum, New York, 1986).

Lamotte, M.

M. M. De Souza Sierra, O. F. X. Donard, M. Lamotte, C. Belin, M. Ewald, “Fluorescence spectroscopy of coastal and marine waters,” Mar. Chem. 47, 127–144 (1994).
[CrossRef]

Lippman, R. P.

R. P. Lippman, “An introduction to computing with neural nets,” IEEE Trans. Acoust. Speech Signal Process. 4(2), 4–22 (1987).

Lobbes, J.

S. Determann, J. Lobbes, R. Reuter, J. Rullkötter, “UV fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

Lyashenko, A. I.

D. V. Maslov, V. V. Fadeev, A. I. Lyashenko, “A shore-based lidar for coastal seawater monitoring,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings (Workshop on LIDAR on Land and Sea), R. Reuter, ed. (EARSeL, Paris, 2001), pp. 46–52.

Madala, H. R.

H. R. Madala, A. G. Ivakhnenko, Inductive Learning Algorithms for Complex Systems Modeling (CRC Press, Boca Raton, Fla., 1994).

Maslov, D. V.

D. V. Maslov, V. V. Fadeev, A. I. Lyashenko, “A shore-based lidar for coastal seawater monitoring,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings (Workshop on LIDAR on Land and Sea), R. Reuter, ed. (EARSeL, Paris, 2001), pp. 46–52.

Measures, R. M.

R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley, New York, 1984).

Mielenz, K. D.

R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate, NBS Spec. Publ. SP-260 64 (National Bureau of Standards, Washington, DC, 1980).

Mikhailov, V. I.

A. I. Simonov, V. I. Mikhailov, “Chemical pollution of thin surface layer of the World Ocean,” Tr. Gos. Okeanogr. Inst. 149, 5–16 (1979).

Mopper, K.

K. Mopper, C. A. Schultz, “Fluorescence as a possible tool for studying the nature and water column distribution of DOC components,” Mar. Chem. 41, 229–238 (1993).
[CrossRef]

N. Tikhonov, A.

A. N. Tikhonov, V. Ya. Arsenin, Methods of Solving Ill-Posed Problems, Scripta Series in Mathematics (Scripta Mathematics, New York, 1977).

Nieke, B.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Nol’de, S. E.

A. G. Abroskin, S. E. Nol’de, V. V. Fadeev, V. V. Chubarov, “Laser fluorimetry determination of emulsified-dissolved oil in water,” Sov. Phys. Dokl. 33, 215–217 (1988).

Paetzold, R.

K. Hennig, T. de Vries, R. Paetzold, K. Jantos, E. Voss, A. Anders, “Multi sensor system for fast analyses in environmental monitoring with application in waste water treatment,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings, R. Reuter, ed. (EARSeL, Paris, 2001), Vol. 1, pp. 61–67.

Persiantsev, I. G.

S. A. Dolenko, T. A. Dolenko, V. V. Fadeev, E. M. Filippova, O. V. Kozyreva, I. G. Persiantsev, “Solution of inverse problem in nonlinear laser fluorimetry of organic compounds with the use of artificial neural networks,” Pattern Recognition Image Anal. 9, 510–515 (1999).

Poryvkina, L.

S. Babichenko, L. Poryvkina, S. Kaitala, “Multiple-wavelength remote sensing of phytoplankton,” EARSeL Adv. Remote Sens. 3, 78–83 (1995).

Reuter, R.

S. Determann, J. Lobbes, R. Reuter, J. Rullkötter, “UV fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

S. Determann, R. Reuter, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 2. Vertical profiles, and relation to water masses,” Deep-Sea Res. I 43, 345–360 (1996).
[CrossRef]

S. Determann, R. Reuter, P. Wagner, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 1. Method of measurement and near-surface distribution,” Deep-Sea Res. I 41, 659–675 (1994).
[CrossRef]

T. Hengstermann, R. Reuter, “Laser remote sensing of pollution of the sea: a quantitative approach,” EARSeL Adv. Remote Sens. 1, 52–60 (1992).

Rullkötter, J.

S. Determann, J. Lobbes, R. Reuter, J. Rullkötter, “UV fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

Sabirov, A. R.

I. V. Boychuk, T. A. Dolenko, A. R. Sabirov, V. V. Fadeev, E. M. Filippova, “Study of the uniqueness and stability of the solution of inverse problem in saturation fluorimetry,” Quantum Electron. 30, 611–616 (2000).
[CrossRef]

Schultz, C. A.

K. Mopper, C. A. Schultz, “Fluorescence as a possible tool for studying the nature and water column distribution of DOC components,” Mar. Chem. 41, 229–238 (1993).
[CrossRef]

Simonov, A. I.

A. I. Simonov, V. I. Mikhailov, “Chemical pollution of thin surface layer of the World Ocean,” Tr. Gos. Okeanogr. Inst. 149, 5–16 (1979).

Specht, D.

D. Specht, “A general regression neural network,” IEEE Trans. Neural Netw. 2, 568–589 (1991).
[CrossRef] [PubMed]

Therriault, J. C.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Voss, E.

K. Hennig, T. de Vries, R. Paetzold, K. Jantos, E. Voss, A. Anders, “Multi sensor system for fast analyses in environmental monitoring with application in waste water treatment,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings, R. Reuter, ed. (EARSeL, Paris, 2001), Vol. 1, pp. 61–67.

Wagner, P.

S. Determann, R. Reuter, P. Wagner, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 1. Method of measurement and near-surface distribution,” Deep-Sea Res. I 41, 659–675 (1994).
[CrossRef]

Wang, H.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Willkomm, R.

S. Determann, R. Reuter, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 2. Vertical profiles, and relation to water masses,” Deep-Sea Res. I 43, 345–360 (1996).
[CrossRef]

S. Determann, R. Reuter, P. Wagner, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 1. Method of measurement and near-surface distribution,” Deep-Sea Res. I 41, 659–675 (1994).
[CrossRef]

Can. J. Appl. Spectrosc. (1)

E. M. Filippova, V. V. Chubarov, V. V. Fadeev, “New possibilities of laser fluorescence spectroscopy for diagnostics of petroleum hydrocarbons in natural water,” Can. J. Appl. Spectrosc. 38, 139–144 (1993).

Cont. Shelf Res. (1)

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in the St. Lawrence Estuary (Case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Deep-Sea Res. I (2)

S. Determann, R. Reuter, P. Wagner, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 1. Method of measurement and near-surface distribution,” Deep-Sea Res. I 41, 659–675 (1994).
[CrossRef]

S. Determann, R. Reuter, R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. 2. Vertical profiles, and relation to water masses,” Deep-Sea Res. I 43, 345–360 (1996).
[CrossRef]

EARSeL Adv. Remote Sens. (2)

S. Babichenko, L. Poryvkina, S. Kaitala, “Multiple-wavelength remote sensing of phytoplankton,” EARSeL Adv. Remote Sens. 3, 78–83 (1995).

T. Hengstermann, R. Reuter, “Laser remote sensing of pollution of the sea: a quantitative approach,” EARSeL Adv. Remote Sens. 1, 52–60 (1992).

IEEE Trans. Acoust. Speech Signal Process. (1)

R. P. Lippman, “An introduction to computing with neural nets,” IEEE Trans. Acoust. Speech Signal Process. 4(2), 4–22 (1987).

IEEE Trans. Neural Netw. (1)

D. Specht, “A general regression neural network,” IEEE Trans. Neural Netw. 2, 568–589 (1991).
[CrossRef] [PubMed]

Mar. Chem. (5)

R. F. Chen, J. L. Bada, “The fluorescence of dissolved organic matter in seawater,” Mar. Chem. 37, 191–221 (1992).
[CrossRef]

K. Mopper, C. A. Schultz, “Fluorescence as a possible tool for studying the nature and water column distribution of DOC components,” Mar. Chem. 41, 229–238 (1993).
[CrossRef]

M. M. De Souza Sierra, O. F. X. Donard, M. Lamotte, C. Belin, M. Ewald, “Fluorescence spectroscopy of coastal and marine waters,” Mar. Chem. 47, 127–144 (1994).
[CrossRef]

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

S. Determann, J. Lobbes, R. Reuter, J. Rullkötter, “UV fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

Marine Pollution Monitoring (1)

A. W. Hornig, “Identification, estimation and monitoring of petroleum in marine waters by luminescence methods,” in Marine Pollution Monitoring, NBS Spec. Publ. 409, 135–144 (1974).

Nature (1)

P. Coble, S. A. Green, N. V. Blough, R. B. Gagosian, “Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy,” Nature 348, 432–435 (1990).
[CrossRef]

Opt. Commun. (1)

V. V. Fadeev, T. A. Dolenko, E. M. Filippova, V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999).
[CrossRef]

Pattern Recognition Image Anal. (1)

S. A. Dolenko, T. A. Dolenko, V. V. Fadeev, E. M. Filippova, O. V. Kozyreva, I. G. Persiantsev, “Solution of inverse problem in nonlinear laser fluorimetry of organic compounds with the use of artificial neural networks,” Pattern Recognition Image Anal. 9, 510–515 (1999).

Quantum Electron. (1)

I. V. Boychuk, T. A. Dolenko, A. R. Sabirov, V. V. Fadeev, E. M. Filippova, “Study of the uniqueness and stability of the solution of inverse problem in saturation fluorimetry,” Quantum Electron. 30, 611–616 (2000).
[CrossRef]

Sov. Phys. Dokl. (2)

A. G. Abroskin, S. E. Nol’de, V. V. Fadeev, V. V. Chubarov, “Laser fluorimetry determination of emulsified-dissolved oil in water,” Sov. Phys. Dokl. 33, 215–217 (1988).

D. N. Klyshko, V. V. Fadeev, “Remote determination of the admixture concentrations in water the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).

Tr. Gos. Okeanogr. Inst. (1)

A. I. Simonov, V. I. Mikhailov, “Chemical pollution of thin surface layer of the World Ocean,” Tr. Gos. Okeanogr. Inst. 149, 5–16 (1979).

Other (10)

V. V. Fadeev, “Possibilities of standardization of normalized fluorescent parameter as a measure of organic admixtures concentration in water and atmosphere,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schafer, K. Weber, K. Weitkamp, J.-P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 458–466 (1999).
[CrossRef]

Intergovernmental Oceanographic Comission/United Nations Environmental Programme, Manual for Monitoring Oil and Dissolved/Dispersed Petroleum Hydrocarbons in Marine Waters and on Beaches, Manuals and Guides No. 13UN Educational, Scientific, and Cultural Organization, Paris, 1984).

J. Lakovich, Principles of Fluorescence Spectroscopy (Plenum, New York, 1986).

R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley, New York, 1984).

R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate, NBS Spec. Publ. SP-260 64 (National Bureau of Standards, Washington, DC, 1980).

D. V. Maslov, V. V. Fadeev, A. I. Lyashenko, “A shore-based lidar for coastal seawater monitoring,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings (Workshop on LIDAR on Land and Sea), R. Reuter, ed. (EARSeL, Paris, 2001), pp. 46–52.

E. M. Filippova, V. V. Fadeev, V. V. Chubarov, “The origin and structure of fluorescence band from aquatic humic substances,” in 5th International Conference on Laser Application in Life Sciences, P. A. Apanasevich, N. I. Koroteev, S. G. Kruglik, V. N. Zadkov, eds., Proc. SPIE2370, 651–655 (1994).
[CrossRef]

K. Hennig, T. de Vries, R. Paetzold, K. Jantos, E. Voss, A. Anders, “Multi sensor system for fast analyses in environmental monitoring with application in waste water treatment,” in European Association of Remote Sensing Laboratories (EARSeL) eProceedings, R. Reuter, ed. (EARSeL, Paris, 2001), Vol. 1, pp. 61–67.

H. R. Madala, A. G. Ivakhnenko, Inductive Learning Algorithms for Complex Systems Modeling (CRC Press, Boca Raton, Fla., 1994).

A. N. Tikhonov, V. Ya. Arsenin, Methods of Solving Ill-Posed Problems, Scripta Series in Mathematics (Scripta Mathematics, New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical fluorescence spectra of a Black Sea water sample (expedition 2000) taken at 0.5-m depth. Excitation wavelength, 337 nm. 1, Initial seawater sample; 2, sample after extraction of OP by hexane (ratio of water volume V w to hexane volume v h , V w /v h = 40); 3, a hexane extract, where Rw and Rh are Raman scattering bands of water and hexane, respectively; 4, pure hexane. Spectra were measured with the laser spectrometer.

Fig. 2
Fig. 2

Fluorescence bands of seawater samples after extraction of OP by hexane. The samples were taken from Blue Bay at 0.5-m depth. Distances of sample positions from the coastline, in meters: 1, 100; 2, 300; 3, 600; 4, 1000. Excitation wavelength, 337 nm. Spectra were measured with the laser spectrometer.

Fig. 3
Fig. 3

Fluorescence spectra of 1, FA (0.9 mg/L); 2, LO; and 3, their mixture in distilled water. Excitation wavelength, 337 nm. Spectra were measured with the Perkin-Elmer LS50 luminescence spectrometer.

Fig. 4
Fig. 4

Fluorescence spectra of (a) HO and (b) DF in 1, hexane; 2, distilled water; and 3, a hexane extract from water. Excitation wavelength, 337 nm. Spectra were measured with the laser spectrometer.

Fig. 5
Fig. 5

Mean relative error of the Φ0 OP parameter estimation (εOP) versus true Φ0 OP values (Φ0 FA = 19.7): 1, noise-free data presented to the network trained on noise-free data; 2, data with 3% noise presented to the network trained on noise-free data; 3, data with 3% noise presented to the network trained on noisy data.

Fig. 6
Fig. 6

Mean relative error of the Φ0 OP parameter estimation (εOP) versus noise level in the input data (Φ0 OP = 1.7, Φ0 FA = 9.7): 1, network trained on noise-free data; 2, network trained on noisy data.

Fig. 7
Fig. 7

Dependence of mean relative errors of 1, the Φ0 OP parameter estimation εOP and 2, the Φ0 FA parameter estimation εFA on relative bandwidth Δλ′/Δλ0.

Fig. 8
Fig. 8

Dependence of mean relative errors 1, εOP and 2, εFA on the change of distance between OP and FA band maxima Δλmax. This change is equal to 0 for Δλmax = 60 nm (Δλmax = 60 nm was used during ANN training).

Tables (2)

Tables Icon

Table 1 Results of the Numerical Experiments

Tables Icon

Table 2 Results of Application of ANN to Field Experimental Spectra to Determine the Parameters Φ0 OP for which the Suspected OP is DF and Φ0 AHS a

Metrics