Abstract

In this study the scattering of radiation by condensation drops deposited on a single glass plate is dealt with. Experiments were carried out in the visible radiation range by means of a laboratory measuring unit as a function of three parameters, namely, the phase of the condensation process, the wavelength of the incident radiation, and the radiation incidence angle. The experiments indicated that during the condensation process a steady state in the scattering pattern of single glass occurred after a transition phase. Owing to the condensate, more than 80% of the transmitted visible radiation was scattered. The scattering slightly diminished with increasing wavelength, from 400 to 700 nm, and the asymmetry of the scattering pattern enlarged with increasing incidence angle of the radiation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. I. Edwards, J. V. Lake, “Transmission of solar radiation in a small east-west glasshouse glazed with diffusive glass,” J. Agric. Eng. Res. 10, 197–201 (1965).
    [CrossRef]
  2. H. Gijzen, “Short-term crop responses,” in Greenhouse Climate Control, J. C. Bakker, G. P. A. Bot, H. Challa, N. J. Van de Braak, eds. (Wageningen Press, Wageningen, The Netherlands, 1995), pp. 16–62.
  3. D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, S. P. Long, Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual (Chapman & Hall, London, 1995).
  4. A. El-Bahi, D. Inan, “A solar still with minimum inclination and coupled to an outside condenser,” in ISES Solar World Congress 1999 Proceedings, G. Grossman, ed. (International Solar Energy Society, Freiburg, Germany, 1999), pp. 1277–1282.
  5. S. Aggarwal, A. Narayan, “Computer based thermal modelling of double condensing chamber solar still,” in Renewable Energy. Renewables: The Energy for the 21st Century. Part II, A. A. M. Sayigh, ed. (Pergamon, Amsterdam, 2000), pp. 1114–1117.
  6. C. K. Hsieh, A. K. Rajvanshi, “The effect of dropwise condensation on glass solar properties,” Sol. Energy 19, 389–393 (1977).
    [CrossRef]
  7. H. Fechner, O. Bucek, “Solar air collectors—investigations on several series-produced collectors,” in ISES Solar World Congress 1999 Proceedings, G. Grossman, ed. (International Solar Energy Society, Freiburg, Germany, 1999), pp. 1103–1108.
  8. J. G. Pieters, Influence of Condensation on the Heat Balance and the Light Transmission of a Greenhouse (University of Ghent, Ghent, Belgium, 1995).
  9. J. N. Walker, D. J. Cotter, “Condensation and resultant humidity in greenhouses during cold weather,” Trans. ASAE 11, 263–266 (1968).
    [CrossRef]
  10. B. J. Briscoe, K. P. Galvin, “The effect of surface fog on the transmittance of light,” Sol. Energy 46, 191–197 (1991).
    [CrossRef]
  11. P. H. Heinemann, P. N. Walker, “Effects of greenhouse surface heating water on light transmission,” Trans. ASAE 30, 215–220 (1987).
    [CrossRef]
  12. J. G. Pieters, J. Deltour, M. Debruyckere, “Light transmission through condensation on glass and polyethylene,” Agric. For. Meteorol. 85, 51–62 (1997).
    [CrossRef]
  13. F. Geoola, Y. Kashti, U. M. Peiper, “A model greenhouse for testing the role of condensation, dust and dirt on the solar radiation transmissivity of greenhouse cladding materials,” J. Agric. Eng. Res. 71, 339–346 (1998).
    [CrossRef]
  14. I. V. Pollet, J. G. Pieters, “Condensation and radiation transmittance of greenhouse cladding materials. Part 3: Results for glass plates and plastic films,” J. Agric. Eng. Res. 77, 419–428 (2000).
    [CrossRef]
  15. I. V. Pollet, J. G. Pieters, “PAR transmittances of dry and condensate-covered glass and plastic greenhouse cladding,” Agric. For. Meteorol. 110, 285–298.
  16. P. Apian-Bennewitz, Messung und Modellierung von lichtstreuenden Materialien zur Computer-simulation von Tageslichtbeleuchtung (University of Freiburg, Freiburg, Germany, 1995).
  17. J. Ferber, J. Luther, “Computer simulations of light scattering and absorption in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 54, 265–275 (1998).
    [CrossRef]
  18. P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, V. Wittwer, “Simulation of multiply scattering media,” Sol. Energy Mater. Sol. Cells 54, 297–307 (1998).
    [CrossRef]
  19. W. E. Vargas, “Generalized four-flux radiative transfer model,” Appl. Opt. 37, 2615–2623 (1998).
    [CrossRef]
  20. W. E. Vargas, G. A. Niklasson, “Forward-scattering ratios and average pathlength parameter in radiative transfer models,” J. Phys. Condens. Matter 9, 9083–9096 (1997).
    [CrossRef]
  21. W. E. Vargas, G. A. Niklasson, “Intensity of diffuse radiation in particulate media,” J. Opt. Soc. Am. A 14, 2253–2262 (1997).
    [CrossRef]
  22. L. C. Godbey, T. E. Bond, H. F. Zornig, “Transmission of solar and long-wavelength energy by materials used as covers for solar collectors and greenhouses,” Trans. ASAE 22, 1137–1144 (1979).
    [CrossRef]
  23. B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
    [CrossRef]
  24. S. Pearson, A. E. Wheldon, P. Hadley, “Radiation transmission and fluorescence of nine greenhouse cladding materials,” J. Agric. Eng. Res. 62, 61–70 (1995).
    [CrossRef]
  25. D. Rönnow, A. Roos, “Correction factors for reflectance and transmittance measurements of scattering samples in focusing Coblentz spheres and integrating spheres,” Rev. Sci. Instrum. 66, 2411–2422 (1995).
    [CrossRef]
  26. A. Roos, “Interpretation of integrating sphere signal output for nonideal transmitting samples,” Appl. Opt. 30, 468–474 (1991).
    [CrossRef] [PubMed]
  27. A. Roos, “Use of an integrating sphere in solar energy research,” Sol. Energy Mater. Sol. Cells 30, 77–94 (1993).
    [CrossRef]
  28. J. G. Pieters, J. M. Deltour, M. J. Debruyckere, “Experimental determination of the geometry of real drops on transparent materials,” J. Phys. III 6, 975–989 (1996).
  29. J. Deltour, “Réalisation d’un dispositif permettant de relever les indicatrices de diffusion de matériaux utilisés en couverture de serres,” Bull. Rech. Agron. Gembloux 11, 25–40 (1976) (in French).
  30. J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE, Bellingham, Wash., 1995).
    [CrossRef]
  31. I. V. Pollet, J. G. Pieters, “Condensation and radiation transmittance of greenhouse cladding materials. Part 2: Results for a complete condensation cycle,” J. Agric. Eng. Res. 75, 65–72 (2000).
    [CrossRef]
  32. P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827–863 (1985).
    [CrossRef]

2000 (2)

I. V. Pollet, J. G. Pieters, “Condensation and radiation transmittance of greenhouse cladding materials. Part 3: Results for glass plates and plastic films,” J. Agric. Eng. Res. 77, 419–428 (2000).
[CrossRef]

I. V. Pollet, J. G. Pieters, “Condensation and radiation transmittance of greenhouse cladding materials. Part 2: Results for a complete condensation cycle,” J. Agric. Eng. Res. 75, 65–72 (2000).
[CrossRef]

1998 (5)

J. Ferber, J. Luther, “Computer simulations of light scattering and absorption in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 54, 265–275 (1998).
[CrossRef]

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, V. Wittwer, “Simulation of multiply scattering media,” Sol. Energy Mater. Sol. Cells 54, 297–307 (1998).
[CrossRef]

W. E. Vargas, “Generalized four-flux radiative transfer model,” Appl. Opt. 37, 2615–2623 (1998).
[CrossRef]

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

F. Geoola, Y. Kashti, U. M. Peiper, “A model greenhouse for testing the role of condensation, dust and dirt on the solar radiation transmissivity of greenhouse cladding materials,” J. Agric. Eng. Res. 71, 339–346 (1998).
[CrossRef]

1997 (3)

J. G. Pieters, J. Deltour, M. Debruyckere, “Light transmission through condensation on glass and polyethylene,” Agric. For. Meteorol. 85, 51–62 (1997).
[CrossRef]

W. E. Vargas, G. A. Niklasson, “Forward-scattering ratios and average pathlength parameter in radiative transfer models,” J. Phys. Condens. Matter 9, 9083–9096 (1997).
[CrossRef]

W. E. Vargas, G. A. Niklasson, “Intensity of diffuse radiation in particulate media,” J. Opt. Soc. Am. A 14, 2253–2262 (1997).
[CrossRef]

1996 (1)

J. G. Pieters, J. M. Deltour, M. J. Debruyckere, “Experimental determination of the geometry of real drops on transparent materials,” J. Phys. III 6, 975–989 (1996).

1995 (2)

S. Pearson, A. E. Wheldon, P. Hadley, “Radiation transmission and fluorescence of nine greenhouse cladding materials,” J. Agric. Eng. Res. 62, 61–70 (1995).
[CrossRef]

D. Rönnow, A. Roos, “Correction factors for reflectance and transmittance measurements of scattering samples in focusing Coblentz spheres and integrating spheres,” Rev. Sci. Instrum. 66, 2411–2422 (1995).
[CrossRef]

1993 (1)

A. Roos, “Use of an integrating sphere in solar energy research,” Sol. Energy Mater. Sol. Cells 30, 77–94 (1993).
[CrossRef]

1991 (2)

A. Roos, “Interpretation of integrating sphere signal output for nonideal transmitting samples,” Appl. Opt. 30, 468–474 (1991).
[CrossRef] [PubMed]

B. J. Briscoe, K. P. Galvin, “The effect of surface fog on the transmittance of light,” Sol. Energy 46, 191–197 (1991).
[CrossRef]

1987 (1)

P. H. Heinemann, P. N. Walker, “Effects of greenhouse surface heating water on light transmission,” Trans. ASAE 30, 215–220 (1987).
[CrossRef]

1985 (1)

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827–863 (1985).
[CrossRef]

1979 (1)

L. C. Godbey, T. E. Bond, H. F. Zornig, “Transmission of solar and long-wavelength energy by materials used as covers for solar collectors and greenhouses,” Trans. ASAE 22, 1137–1144 (1979).
[CrossRef]

1977 (1)

C. K. Hsieh, A. K. Rajvanshi, “The effect of dropwise condensation on glass solar properties,” Sol. Energy 19, 389–393 (1977).
[CrossRef]

1976 (1)

J. Deltour, “Réalisation d’un dispositif permettant de relever les indicatrices de diffusion de matériaux utilisés en couverture de serres,” Bull. Rech. Agron. Gembloux 11, 25–40 (1976) (in French).

1968 (1)

J. N. Walker, D. J. Cotter, “Condensation and resultant humidity in greenhouses during cold weather,” Trans. ASAE 11, 263–266 (1968).
[CrossRef]

1965 (1)

R. I. Edwards, J. V. Lake, “Transmission of solar radiation in a small east-west glasshouse glazed with diffusive glass,” J. Agric. Eng. Res. 10, 197–201 (1965).
[CrossRef]

Aggarwal, S.

S. Aggarwal, A. Narayan, “Computer based thermal modelling of double condensing chamber solar still,” in Renewable Energy. Renewables: The Energy for the 21st Century. Part II, A. A. M. Sayigh, ed. (Pergamon, Amsterdam, 2000), pp. 1114–1117.

Apian-Bennewitz, P.

P. Apian-Bennewitz, Messung und Modellierung von lichtstreuenden Materialien zur Computer-simulation von Tageslichtbeleuchtung (University of Freiburg, Freiburg, Germany, 1995).

Bolhàr-Nordenkampf, H. R.

D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, S. P. Long, Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual (Chapman & Hall, London, 1995).

Bond, T. E.

L. C. Godbey, T. E. Bond, H. F. Zornig, “Transmission of solar and long-wavelength energy by materials used as covers for solar collectors and greenhouses,” Trans. ASAE 22, 1137–1144 (1979).
[CrossRef]

Briscoe, B. J.

B. J. Briscoe, K. P. Galvin, “The effect of surface fog on the transmittance of light,” Sol. Energy 46, 191–197 (1991).
[CrossRef]

Bucek, O.

H. Fechner, O. Bucek, “Solar air collectors—investigations on several series-produced collectors,” in ISES Solar World Congress 1999 Proceedings, G. Grossman, ed. (International Solar Energy Society, Freiburg, Germany, 1999), pp. 1103–1108.

Chevalier, B.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Cotter, D. J.

J. N. Walker, D. J. Cotter, “Condensation and resultant humidity in greenhouses during cold weather,” Trans. ASAE 11, 263–266 (1968).
[CrossRef]

de Gennes, P. G.

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827–863 (1985).
[CrossRef]

Debruyckere, M.

J. G. Pieters, J. Deltour, M. Debruyckere, “Light transmission through condensation on glass and polyethylene,” Agric. For. Meteorol. 85, 51–62 (1997).
[CrossRef]

Debruyckere, M. J.

J. G. Pieters, J. M. Deltour, M. J. Debruyckere, “Experimental determination of the geometry of real drops on transparent materials,” J. Phys. III 6, 975–989 (1996).

Deltour, J.

J. G. Pieters, J. Deltour, M. Debruyckere, “Light transmission through condensation on glass and polyethylene,” Agric. For. Meteorol. 85, 51–62 (1997).
[CrossRef]

J. Deltour, “Réalisation d’un dispositif permettant de relever les indicatrices de diffusion de matériaux utilisés en couverture de serres,” Bull. Rech. Agron. Gembloux 11, 25–40 (1976) (in French).

Deltour, J. M.

J. G. Pieters, J. M. Deltour, M. J. Debruyckere, “Experimental determination of the geometry of real drops on transparent materials,” J. Phys. III 6, 975–989 (1996).

Edwards, R. I.

R. I. Edwards, J. V. Lake, “Transmission of solar radiation in a small east-west glasshouse glazed with diffusive glass,” J. Agric. Eng. Res. 10, 197–201 (1965).
[CrossRef]

El-Bahi, A.

A. El-Bahi, D. Inan, “A solar still with minimum inclination and coupled to an outside condenser,” in ISES Solar World Congress 1999 Proceedings, G. Grossman, ed. (International Solar Energy Society, Freiburg, Germany, 1999), pp. 1277–1282.

Fechner, H.

H. Fechner, O. Bucek, “Solar air collectors—investigations on several series-produced collectors,” in ISES Solar World Congress 1999 Proceedings, G. Grossman, ed. (International Solar Energy Society, Freiburg, Germany, 1999), pp. 1103–1108.

Ferber, J.

J. Ferber, J. Luther, “Computer simulations of light scattering and absorption in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 54, 265–275 (1998).
[CrossRef]

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, V. Wittwer, “Simulation of multiply scattering media,” Sol. Energy Mater. Sol. Cells 54, 297–307 (1998).
[CrossRef]

Galvin, K. P.

B. J. Briscoe, K. P. Galvin, “The effect of surface fog on the transmittance of light,” Sol. Energy 46, 191–197 (1991).
[CrossRef]

Geoola, F.

F. Geoola, Y. Kashti, U. M. Peiper, “A model greenhouse for testing the role of condensation, dust and dirt on the solar radiation transmissivity of greenhouse cladding materials,” J. Agric. Eng. Res. 71, 339–346 (1998).
[CrossRef]

Gijzen, H.

H. Gijzen, “Short-term crop responses,” in Greenhouse Climate Control, J. C. Bakker, G. P. A. Bot, H. Challa, N. J. Van de Braak, eds. (Wageningen Press, Wageningen, The Netherlands, 1995), pp. 16–62.

Godbey, L. C.

L. C. Godbey, T. E. Bond, H. F. Zornig, “Transmission of solar and long-wavelength energy by materials used as covers for solar collectors and greenhouses,” Trans. ASAE 22, 1137–1144 (1979).
[CrossRef]

Hadley, P.

S. Pearson, A. E. Wheldon, P. Hadley, “Radiation transmission and fluorescence of nine greenhouse cladding materials,” J. Agric. Eng. Res. 62, 61–70 (1995).
[CrossRef]

Hall, D. O.

D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, S. P. Long, Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual (Chapman & Hall, London, 1995).

Heinemann, P. H.

P. H. Heinemann, P. N. Walker, “Effects of greenhouse surface heating water on light transmission,” Trans. ASAE 30, 215–220 (1987).
[CrossRef]

Hsieh, C. K.

C. K. Hsieh, A. K. Rajvanshi, “The effect of dropwise condensation on glass solar properties,” Sol. Energy 19, 389–393 (1977).
[CrossRef]

Hutchins, M. G.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Inan, D.

A. El-Bahi, D. Inan, “A solar still with minimum inclination and coupled to an outside condenser,” in ISES Solar World Congress 1999 Proceedings, G. Grossman, ed. (International Solar Energy Society, Freiburg, Germany, 1999), pp. 1277–1282.

Kashti, Y.

F. Geoola, Y. Kashti, U. M. Peiper, “A model greenhouse for testing the role of condensation, dust and dirt on the solar radiation transmissivity of greenhouse cladding materials,” J. Agric. Eng. Res. 71, 339–346 (1998).
[CrossRef]

Lake, J. V.

R. I. Edwards, J. V. Lake, “Transmission of solar radiation in a small east-west glasshouse glazed with diffusive glass,” J. Agric. Eng. Res. 10, 197–201 (1965).
[CrossRef]

Leegood, R. C.

D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, S. P. Long, Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual (Chapman & Hall, London, 1995).

Long, S. P.

D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, S. P. Long, Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual (Chapman & Hall, London, 1995).

Luther, J.

J. Ferber, J. Luther, “Computer simulations of light scattering and absorption in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 54, 265–275 (1998).
[CrossRef]

Maccari, A.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Narayan, A.

S. Aggarwal, A. Narayan, “Computer based thermal modelling of double condensing chamber solar still,” in Renewable Energy. Renewables: The Energy for the 21st Century. Part II, A. A. M. Sayigh, ed. (Pergamon, Amsterdam, 2000), pp. 1114–1117.

Niklasson, G. A.

W. E. Vargas, G. A. Niklasson, “Forward-scattering ratios and average pathlength parameter in radiative transfer models,” J. Phys. Condens. Matter 9, 9083–9096 (1997).
[CrossRef]

W. E. Vargas, G. A. Niklasson, “Intensity of diffuse radiation in particulate media,” J. Opt. Soc. Am. A 14, 2253–2262 (1997).
[CrossRef]

Nitz, P.

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, V. Wittwer, “Simulation of multiply scattering media,” Sol. Energy Mater. Sol. Cells 54, 297–307 (1998).
[CrossRef]

Olive, F.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Oversloot, H.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Pearson, S.

S. Pearson, A. E. Wheldon, P. Hadley, “Radiation transmission and fluorescence of nine greenhouse cladding materials,” J. Agric. Eng. Res. 62, 61–70 (1995).
[CrossRef]

Peiper, U. M.

F. Geoola, Y. Kashti, U. M. Peiper, “A model greenhouse for testing the role of condensation, dust and dirt on the solar radiation transmissivity of greenhouse cladding materials,” J. Agric. Eng. Res. 71, 339–346 (1998).
[CrossRef]

Pieters, J. G.

I. V. Pollet, J. G. Pieters, “Condensation and radiation transmittance of greenhouse cladding materials. Part 3: Results for glass plates and plastic films,” J. Agric. Eng. Res. 77, 419–428 (2000).
[CrossRef]

I. V. Pollet, J. G. Pieters, “Condensation and radiation transmittance of greenhouse cladding materials. Part 2: Results for a complete condensation cycle,” J. Agric. Eng. Res. 75, 65–72 (2000).
[CrossRef]

J. G. Pieters, J. Deltour, M. Debruyckere, “Light transmission through condensation on glass and polyethylene,” Agric. For. Meteorol. 85, 51–62 (1997).
[CrossRef]

J. G. Pieters, J. M. Deltour, M. J. Debruyckere, “Experimental determination of the geometry of real drops on transparent materials,” J. Phys. III 6, 975–989 (1996).

I. V. Pollet, J. G. Pieters, “PAR transmittances of dry and condensate-covered glass and plastic greenhouse cladding,” Agric. For. Meteorol. 110, 285–298.

J. G. Pieters, Influence of Condensation on the Heat Balance and the Light Transmission of a Greenhouse (University of Ghent, Ghent, Belgium, 1995).

Platzer, W.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Polato, P.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Pollet, I. V.

I. V. Pollet, J. G. Pieters, “Condensation and radiation transmittance of greenhouse cladding materials. Part 3: Results for glass plates and plastic films,” J. Agric. Eng. Res. 77, 419–428 (2000).
[CrossRef]

I. V. Pollet, J. G. Pieters, “Condensation and radiation transmittance of greenhouse cladding materials. Part 2: Results for a complete condensation cycle,” J. Agric. Eng. Res. 75, 65–72 (2000).
[CrossRef]

I. V. Pollet, J. G. Pieters, “PAR transmittances of dry and condensate-covered glass and plastic greenhouse cladding,” Agric. For. Meteorol. 110, 285–298.

Rajvanshi, A. K.

C. K. Hsieh, A. K. Rajvanshi, “The effect of dropwise condensation on glass solar properties,” Sol. Energy 19, 389–393 (1977).
[CrossRef]

Rönnow, D.

D. Rönnow, A. Roos, “Correction factors for reflectance and transmittance measurements of scattering samples in focusing Coblentz spheres and integrating spheres,” Rev. Sci. Instrum. 66, 2411–2422 (1995).
[CrossRef]

Roos, A.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

D. Rönnow, A. Roos, “Correction factors for reflectance and transmittance measurements of scattering samples in focusing Coblentz spheres and integrating spheres,” Rev. Sci. Instrum. 66, 2411–2422 (1995).
[CrossRef]

A. Roos, “Use of an integrating sphere in solar energy research,” Sol. Energy Mater. Sol. Cells 30, 77–94 (1993).
[CrossRef]

A. Roos, “Interpretation of integrating sphere signal output for nonideal transmitting samples,” Appl. Opt. 30, 468–474 (1991).
[CrossRef] [PubMed]

Rosenfeld, J. L. J.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Scurlock, J. M. O.

D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, S. P. Long, Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual (Chapman & Hall, London, 1995).

Squire, T.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Stangl, R.

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, V. Wittwer, “Simulation of multiply scattering media,” Sol. Energy Mater. Sol. Cells 54, 297–307 (1998).
[CrossRef]

Stover, J. C.

J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE, Bellingham, Wash., 1995).
[CrossRef]

Vargas, W. E.

Walker, J. N.

J. N. Walker, D. J. Cotter, “Condensation and resultant humidity in greenhouses during cold weather,” Trans. ASAE 11, 263–266 (1968).
[CrossRef]

Walker, P. N.

P. H. Heinemann, P. N. Walker, “Effects of greenhouse surface heating water on light transmission,” Trans. ASAE 30, 215–220 (1987).
[CrossRef]

Wheldon, A. E.

S. Pearson, A. E. Wheldon, P. Hadley, “Radiation transmission and fluorescence of nine greenhouse cladding materials,” J. Agric. Eng. Res. 62, 61–70 (1995).
[CrossRef]

Wilson, H. R.

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, V. Wittwer, “Simulation of multiply scattering media,” Sol. Energy Mater. Sol. Cells 54, 297–307 (1998).
[CrossRef]

Wittwer, V.

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, V. Wittwer, “Simulation of multiply scattering media,” Sol. Energy Mater. Sol. Cells 54, 297–307 (1998).
[CrossRef]

Yoshimura, K.

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Zornig, H. F.

L. C. Godbey, T. E. Bond, H. F. Zornig, “Transmission of solar and long-wavelength energy by materials used as covers for solar collectors and greenhouses,” Trans. ASAE 22, 1137–1144 (1979).
[CrossRef]

Agric. For. Meteorol. (2)

J. G. Pieters, J. Deltour, M. Debruyckere, “Light transmission through condensation on glass and polyethylene,” Agric. For. Meteorol. 85, 51–62 (1997).
[CrossRef]

I. V. Pollet, J. G. Pieters, “PAR transmittances of dry and condensate-covered glass and plastic greenhouse cladding,” Agric. For. Meteorol. 110, 285–298.

Appl. Opt. (2)

Bull. Rech. Agron. Gembloux (1)

J. Deltour, “Réalisation d’un dispositif permettant de relever les indicatrices de diffusion de matériaux utilisés en couverture de serres,” Bull. Rech. Agron. Gembloux 11, 25–40 (1976) (in French).

J. Agric. Eng. Res. (5)

I. V. Pollet, J. G. Pieters, “Condensation and radiation transmittance of greenhouse cladding materials. Part 2: Results for a complete condensation cycle,” J. Agric. Eng. Res. 75, 65–72 (2000).
[CrossRef]

S. Pearson, A. E. Wheldon, P. Hadley, “Radiation transmission and fluorescence of nine greenhouse cladding materials,” J. Agric. Eng. Res. 62, 61–70 (1995).
[CrossRef]

F. Geoola, Y. Kashti, U. M. Peiper, “A model greenhouse for testing the role of condensation, dust and dirt on the solar radiation transmissivity of greenhouse cladding materials,” J. Agric. Eng. Res. 71, 339–346 (1998).
[CrossRef]

I. V. Pollet, J. G. Pieters, “Condensation and radiation transmittance of greenhouse cladding materials. Part 3: Results for glass plates and plastic films,” J. Agric. Eng. Res. 77, 419–428 (2000).
[CrossRef]

R. I. Edwards, J. V. Lake, “Transmission of solar radiation in a small east-west glasshouse glazed with diffusive glass,” J. Agric. Eng. Res. 10, 197–201 (1965).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Condens. Matter (1)

W. E. Vargas, G. A. Niklasson, “Forward-scattering ratios and average pathlength parameter in radiative transfer models,” J. Phys. Condens. Matter 9, 9083–9096 (1997).
[CrossRef]

J. Phys. III (1)

J. G. Pieters, J. M. Deltour, M. J. Debruyckere, “Experimental determination of the geometry of real drops on transparent materials,” J. Phys. III 6, 975–989 (1996).

Rev. Mod. Phys. (1)

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827–863 (1985).
[CrossRef]

Rev. Sci. Instrum. (1)

D. Rönnow, A. Roos, “Correction factors for reflectance and transmittance measurements of scattering samples in focusing Coblentz spheres and integrating spheres,” Rev. Sci. Instrum. 66, 2411–2422 (1995).
[CrossRef]

Sol. Energy (2)

C. K. Hsieh, A. K. Rajvanshi, “The effect of dropwise condensation on glass solar properties,” Sol. Energy 19, 389–393 (1977).
[CrossRef]

B. J. Briscoe, K. P. Galvin, “The effect of surface fog on the transmittance of light,” Sol. Energy 46, 191–197 (1991).
[CrossRef]

Sol. Energy Mater. Sol. Cells (4)

J. Ferber, J. Luther, “Computer simulations of light scattering and absorption in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 54, 265–275 (1998).
[CrossRef]

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, V. Wittwer, “Simulation of multiply scattering media,” Sol. Energy Mater. Sol. Cells 54, 297–307 (1998).
[CrossRef]

A. Roos, “Use of an integrating sphere in solar energy research,” Sol. Energy Mater. Sol. Cells 30, 77–94 (1993).
[CrossRef]

B. Chevalier, M. G. Hutchins, A. Maccari, F. Olive, H. Oversloot, W. Platzer, P. Polato, A. Roos, J. L. J. Rosenfeld, T. Squire, K. Yoshimura, “Solar energy transmittance of translucent samples: a comparison between large and small integrating sphere measurements,” Sol. Energy Mater. Sol. Cells 54, 197–202 (1998).
[CrossRef]

Trans. ASAE (3)

J. N. Walker, D. J. Cotter, “Condensation and resultant humidity in greenhouses during cold weather,” Trans. ASAE 11, 263–266 (1968).
[CrossRef]

L. C. Godbey, T. E. Bond, H. F. Zornig, “Transmission of solar and long-wavelength energy by materials used as covers for solar collectors and greenhouses,” Trans. ASAE 22, 1137–1144 (1979).
[CrossRef]

P. H. Heinemann, P. N. Walker, “Effects of greenhouse surface heating water on light transmission,” Trans. ASAE 30, 215–220 (1987).
[CrossRef]

Other (8)

H. Fechner, O. Bucek, “Solar air collectors—investigations on several series-produced collectors,” in ISES Solar World Congress 1999 Proceedings, G. Grossman, ed. (International Solar Energy Society, Freiburg, Germany, 1999), pp. 1103–1108.

J. G. Pieters, Influence of Condensation on the Heat Balance and the Light Transmission of a Greenhouse (University of Ghent, Ghent, Belgium, 1995).

H. Gijzen, “Short-term crop responses,” in Greenhouse Climate Control, J. C. Bakker, G. P. A. Bot, H. Challa, N. J. Van de Braak, eds. (Wageningen Press, Wageningen, The Netherlands, 1995), pp. 16–62.

D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, S. P. Long, Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual (Chapman & Hall, London, 1995).

A. El-Bahi, D. Inan, “A solar still with minimum inclination and coupled to an outside condenser,” in ISES Solar World Congress 1999 Proceedings, G. Grossman, ed. (International Solar Energy Society, Freiburg, Germany, 1999), pp. 1277–1282.

S. Aggarwal, A. Narayan, “Computer based thermal modelling of double condensing chamber solar still,” in Renewable Energy. Renewables: The Energy for the 21st Century. Part II, A. A. M. Sayigh, ed. (Pergamon, Amsterdam, 2000), pp. 1114–1117.

P. Apian-Bennewitz, Messung und Modellierung von lichtstreuenden Materialien zur Computer-simulation von Tageslichtbeleuchtung (University of Freiburg, Freiburg, Germany, 1995).

J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE, Bellingham, Wash., 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheme of the measuring setup used for the forward-scattering measurements.

Fig. 2
Fig. 2

Scheme of the forward scattering of incident radiation.

Fig. 3
Fig. 3

Scattering of single glass measured in the plane Φ s for normally incident 550-nm radiation at several moments (min) during the condensation phase without runoff.

Fig. 4
Fig. 4

Photograph of condensate pattern formed on single glass.

Fig. 5
Fig. 5

BTDFs of wet single glass in the planes Φ s and Θ s for 550-nm radiation at normal incidence.

Fig. 6
Fig. 6

BTDFs of (a) dry and (b) wet single glass in the plane Φ s for normal visible radiation at the wavelength as indicated.

Fig. 7
Fig. 7

Distribution of the visible radiation transmitted by wet single glass over the collimated and the scattered components enclosed in several circular cones.

Fig. 8
Fig. 8

BTDFs of wet single glass in the planes (a) Φ s and (b) Θ s for 550-nm radiation incident in the plane Θ i at the angles indicated.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

BTDFθi, ϕi, θs, ϕs=Psθs, ϕs/Piθi, ϕi/Ωs.

Metrics