Abstract

The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is ±15 µε (µm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and ±5 µε with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are ±7 and ±15 µε for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is ±20 µε for the two-point loading case.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kurashima, T. Usu, K. Tanaka, A. Nobiki, M. Sato, K. Nakai, “Application of fiber optic distributed sensor for strain measurements in civil engineering,” in Smart Materials, Structures, and Integrated Systems, A. Hariz, V. K. Varadan, O. Reinhold, eds., Proc. SPIE3241, 247–258 (1997).
    [CrossRef]
  2. L. Thevenaz, N. Nikles, A. Fellay, M. Facchini, P. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 301–314 (1998).
  3. M. DeMerchant, A. Brown, X. Bao, T. Bremner, “Distributed sensing for smart structures,” in Proceedings of CanSmart Workshop Smart Materials and Structures, G. Akhras, ed. (Canadian Space Agency, St-Hubert, Quebec, Canada, 1998), pp. 71–80.
  4. X. Bao, M. DeMerchant, A. Brown, T. Bremner, “Strain measurement of the steel beam with the distributed Brillouin scattering sensor,” in Health Monitoring and Management of Civil Infrastructure Systems, S. B. Chase, A. E. Aktan, eds., Proc. SPIE4337, 223–233 (2001).
    [CrossRef]
  5. X. Bao, D. J. Webb, D. A. Jackson, “Distributed temperature sensor based on Brillouin loss on an optical fiber for transient threshold monitoring,” Can. J. Phys. 74, 1–3 (1996).
    [CrossRef]
  6. X. Bao, A. Brown, M. DeMerchant, J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24, 510–512 (1999).
    [CrossRef]
  7. A. L. Kalamkarov, H. Q. Liu, D. O. MacDonald, “Experimental and analytical studies of smart composite reinforcement,” Composites Part B 29B, 21–30 (1998).
    [CrossRef]
  8. F. Ansari, L. Yuan, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
    [CrossRef]

1999 (1)

1998 (2)

A. L. Kalamkarov, H. Q. Liu, D. O. MacDonald, “Experimental and analytical studies of smart composite reinforcement,” Composites Part B 29B, 21–30 (1998).
[CrossRef]

F. Ansari, L. Yuan, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

1996 (1)

X. Bao, D. J. Webb, D. A. Jackson, “Distributed temperature sensor based on Brillouin loss on an optical fiber for transient threshold monitoring,” Can. J. Phys. 74, 1–3 (1996).
[CrossRef]

Ansari, F.

F. Ansari, L. Yuan, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

Bao, X.

X. Bao, A. Brown, M. DeMerchant, J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24, 510–512 (1999).
[CrossRef]

X. Bao, D. J. Webb, D. A. Jackson, “Distributed temperature sensor based on Brillouin loss on an optical fiber for transient threshold monitoring,” Can. J. Phys. 74, 1–3 (1996).
[CrossRef]

M. DeMerchant, A. Brown, X. Bao, T. Bremner, “Distributed sensing for smart structures,” in Proceedings of CanSmart Workshop Smart Materials and Structures, G. Akhras, ed. (Canadian Space Agency, St-Hubert, Quebec, Canada, 1998), pp. 71–80.

X. Bao, M. DeMerchant, A. Brown, T. Bremner, “Strain measurement of the steel beam with the distributed Brillouin scattering sensor,” in Health Monitoring and Management of Civil Infrastructure Systems, S. B. Chase, A. E. Aktan, eds., Proc. SPIE4337, 223–233 (2001).
[CrossRef]

Bremner, T.

X. Bao, M. DeMerchant, A. Brown, T. Bremner, “Strain measurement of the steel beam with the distributed Brillouin scattering sensor,” in Health Monitoring and Management of Civil Infrastructure Systems, S. B. Chase, A. E. Aktan, eds., Proc. SPIE4337, 223–233 (2001).
[CrossRef]

M. DeMerchant, A. Brown, X. Bao, T. Bremner, “Distributed sensing for smart structures,” in Proceedings of CanSmart Workshop Smart Materials and Structures, G. Akhras, ed. (Canadian Space Agency, St-Hubert, Quebec, Canada, 1998), pp. 71–80.

Brown, A.

X. Bao, A. Brown, M. DeMerchant, J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24, 510–512 (1999).
[CrossRef]

M. DeMerchant, A. Brown, X. Bao, T. Bremner, “Distributed sensing for smart structures,” in Proceedings of CanSmart Workshop Smart Materials and Structures, G. Akhras, ed. (Canadian Space Agency, St-Hubert, Quebec, Canada, 1998), pp. 71–80.

X. Bao, M. DeMerchant, A. Brown, T. Bremner, “Strain measurement of the steel beam with the distributed Brillouin scattering sensor,” in Health Monitoring and Management of Civil Infrastructure Systems, S. B. Chase, A. E. Aktan, eds., Proc. SPIE4337, 223–233 (2001).
[CrossRef]

DeMerchant, M.

X. Bao, A. Brown, M. DeMerchant, J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24, 510–512 (1999).
[CrossRef]

X. Bao, M. DeMerchant, A. Brown, T. Bremner, “Strain measurement of the steel beam with the distributed Brillouin scattering sensor,” in Health Monitoring and Management of Civil Infrastructure Systems, S. B. Chase, A. E. Aktan, eds., Proc. SPIE4337, 223–233 (2001).
[CrossRef]

M. DeMerchant, A. Brown, X. Bao, T. Bremner, “Distributed sensing for smart structures,” in Proceedings of CanSmart Workshop Smart Materials and Structures, G. Akhras, ed. (Canadian Space Agency, St-Hubert, Quebec, Canada, 1998), pp. 71–80.

Facchini, M.

L. Thevenaz, N. Nikles, A. Fellay, M. Facchini, P. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 301–314 (1998).

Fellay, A.

L. Thevenaz, N. Nikles, A. Fellay, M. Facchini, P. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 301–314 (1998).

Jackson, D. A.

X. Bao, D. J. Webb, D. A. Jackson, “Distributed temperature sensor based on Brillouin loss on an optical fiber for transient threshold monitoring,” Can. J. Phys. 74, 1–3 (1996).
[CrossRef]

Kalamkarov, A. L.

A. L. Kalamkarov, H. Q. Liu, D. O. MacDonald, “Experimental and analytical studies of smart composite reinforcement,” Composites Part B 29B, 21–30 (1998).
[CrossRef]

Kurashima, T.

T. Kurashima, T. Usu, K. Tanaka, A. Nobiki, M. Sato, K. Nakai, “Application of fiber optic distributed sensor for strain measurements in civil engineering,” in Smart Materials, Structures, and Integrated Systems, A. Hariz, V. K. Varadan, O. Reinhold, eds., Proc. SPIE3241, 247–258 (1997).
[CrossRef]

Liu, H. Q.

A. L. Kalamkarov, H. Q. Liu, D. O. MacDonald, “Experimental and analytical studies of smart composite reinforcement,” Composites Part B 29B, 21–30 (1998).
[CrossRef]

MacDonald, D. O.

A. L. Kalamkarov, H. Q. Liu, D. O. MacDonald, “Experimental and analytical studies of smart composite reinforcement,” Composites Part B 29B, 21–30 (1998).
[CrossRef]

Nakai, K.

T. Kurashima, T. Usu, K. Tanaka, A. Nobiki, M. Sato, K. Nakai, “Application of fiber optic distributed sensor for strain measurements in civil engineering,” in Smart Materials, Structures, and Integrated Systems, A. Hariz, V. K. Varadan, O. Reinhold, eds., Proc. SPIE3241, 247–258 (1997).
[CrossRef]

Nikles, N.

L. Thevenaz, N. Nikles, A. Fellay, M. Facchini, P. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 301–314 (1998).

Nobiki, A.

T. Kurashima, T. Usu, K. Tanaka, A. Nobiki, M. Sato, K. Nakai, “Application of fiber optic distributed sensor for strain measurements in civil engineering,” in Smart Materials, Structures, and Integrated Systems, A. Hariz, V. K. Varadan, O. Reinhold, eds., Proc. SPIE3241, 247–258 (1997).
[CrossRef]

Robert, P.

L. Thevenaz, N. Nikles, A. Fellay, M. Facchini, P. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 301–314 (1998).

Sato, M.

T. Kurashima, T. Usu, K. Tanaka, A. Nobiki, M. Sato, K. Nakai, “Application of fiber optic distributed sensor for strain measurements in civil engineering,” in Smart Materials, Structures, and Integrated Systems, A. Hariz, V. K. Varadan, O. Reinhold, eds., Proc. SPIE3241, 247–258 (1997).
[CrossRef]

Smith, J.

Tanaka, K.

T. Kurashima, T. Usu, K. Tanaka, A. Nobiki, M. Sato, K. Nakai, “Application of fiber optic distributed sensor for strain measurements in civil engineering,” in Smart Materials, Structures, and Integrated Systems, A. Hariz, V. K. Varadan, O. Reinhold, eds., Proc. SPIE3241, 247–258 (1997).
[CrossRef]

Thevenaz, L.

L. Thevenaz, N. Nikles, A. Fellay, M. Facchini, P. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 301–314 (1998).

Usu, T.

T. Kurashima, T. Usu, K. Tanaka, A. Nobiki, M. Sato, K. Nakai, “Application of fiber optic distributed sensor for strain measurements in civil engineering,” in Smart Materials, Structures, and Integrated Systems, A. Hariz, V. K. Varadan, O. Reinhold, eds., Proc. SPIE3241, 247–258 (1997).
[CrossRef]

Webb, D. J.

X. Bao, D. J. Webb, D. A. Jackson, “Distributed temperature sensor based on Brillouin loss on an optical fiber for transient threshold monitoring,” Can. J. Phys. 74, 1–3 (1996).
[CrossRef]

Yuan, L.

F. Ansari, L. Yuan, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

Can. J. Phys. (1)

X. Bao, D. J. Webb, D. A. Jackson, “Distributed temperature sensor based on Brillouin loss on an optical fiber for transient threshold monitoring,” Can. J. Phys. 74, 1–3 (1996).
[CrossRef]

Composites Part B (1)

A. L. Kalamkarov, H. Q. Liu, D. O. MacDonald, “Experimental and analytical studies of smart composite reinforcement,” Composites Part B 29B, 21–30 (1998).
[CrossRef]

J. Eng. Mech. (1)

F. Ansari, L. Yuan, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

Opt. Lett. (1)

Other (4)

T. Kurashima, T. Usu, K. Tanaka, A. Nobiki, M. Sato, K. Nakai, “Application of fiber optic distributed sensor for strain measurements in civil engineering,” in Smart Materials, Structures, and Integrated Systems, A. Hariz, V. K. Varadan, O. Reinhold, eds., Proc. SPIE3241, 247–258 (1997).
[CrossRef]

L. Thevenaz, N. Nikles, A. Fellay, M. Facchini, P. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” in Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 301–314 (1998).

M. DeMerchant, A. Brown, X. Bao, T. Bremner, “Distributed sensing for smart structures,” in Proceedings of CanSmart Workshop Smart Materials and Structures, G. Akhras, ed. (Canadian Space Agency, St-Hubert, Quebec, Canada, 1998), pp. 71–80.

X. Bao, M. DeMerchant, A. Brown, T. Bremner, “Strain measurement of the steel beam with the distributed Brillouin scattering sensor,” in Health Monitoring and Management of Civil Infrastructure Systems, S. B. Chase, A. E. Aktan, eds., Proc. SPIE4337, 223–233 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Configuration of the Brillouin-scattering-based distributed sensing system. GPIB, general-purpose interface bus; DAC, data-acquisition digital–analog converter.

Fig. 2
Fig. 2

Layout of the rebars and rods inside the formwork of the concrete beam. (1) Top GFRP rod, CR, contains the optical fiber in the middle of the rod. (2) Bottom GFRP rod, TR, contains the optical fiber in the middle of the rod. (3) Top rebar, CS, the testing device on which the optical fiber is bonded. (4) Bottom steel reinforcing bar, TS, the testing device on which the optical fiber is bonded.

Fig. 3
Fig. 3

Reinforced concrete beam design with sensor and gauges layouts. All measurements are in millimeters. PVC, polyvinyl chloride.

Fig. 4
Fig. 4

Two-point load test. A Baldwin Universal Testing Machine was used to apply loads to the reinforced concrete beam at its midspan.

Fig. 5
Fig. 5

One-point load tensive strain measured by the sensing fiber (a) bonded to the steel reinforcing bar and (b) embedded in the GFRP rod.

Fig. 6
Fig. 6

Two-point load tensive strain measured by the sensing fiber (a) bonded to the steel reinforcing bar and (b) embedded in the GFRP rod.

Fig. 7
Fig. 7

One-point load compressive strain measured by the sensing fiber (a) bonded to the steel reinforcing bar and (b) embedded in the GFRP rod.

Fig. 8
Fig. 8

Two-point load compressive strain measured by the sensing fiber (a) bonded to the steel reinforcing bar and (b) embedded in the GFRP rod.

Fig. 9
Fig. 9

Comparison of one-point load compressive strains acquired from different strain gauges.

Fig. 10
Fig. 10

Comparison of one-point load tensive strains acquired from different strain gauges.

Fig. 11
Fig. 11

Comparison of two-point load compressive strains acquired from different strain gauges.

Fig. 12
Fig. 12

Comparison of two-point load tensive strains acquired from different strain gauges.

Fig. 13
Fig. 13

Impact of loading for two different methods of fiber installation. (top) The optical fiber measures the full load directly when bonded with epoxy, whereas (bottom) the GFRP rod creates a spreading of the strain distribution, allowing the fiber to measure only a partial strain.

Metrics