Abstract

We present a detailed analysis of the output beam of high-power edge-emitting angled tapered superluminescent LEDs (A-TSLEDs). A device model, including spontaneous and stimulated emission processes as well as the typical nonuniform carrier-density distribution due to current spreading and carrier diffusion, has been developed and used to interpret the experimentally obtained characteristics of inhouse-fabricated A-TSLEDs. The good match between measured and theoretical results indicates that the model reproduces the A-TSLED operation very satisfactorily and clearly explains the role of the collecting lens on the pronounced asymmetry of some of the measured optical intensity profiles.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained-quantum-well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
    [CrossRef]
  2. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
    [CrossRef]
  3. S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990).
    [CrossRef]
  4. W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
    [CrossRef]
  5. I. Middlemast, J. Sarma, S. Yunus, “High-power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
    [CrossRef]
  6. F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, C. A. Burrus, “Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with a monolithically integrated waveguide lens for high-power applications,” IEEE Photon. Technol. Lett. 5, 916–919 (1993).
    [CrossRef]
  7. H. Okamoto, M. Wada, Y. Sakai, T. Hirono, Y. Kawaguchi, Y. Kondo, Y. Kadota, K. Kishi, Y. Itaya, “A narrow-beam 1.3-µm superluminescent diode integrated with a spot-size converter and a new-type rear absorbing region,” J. Lightwave Technol. 16, 1881–1887 (1998).
    [CrossRef]
  8. G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1−x)Al(x)As edge-emitting LEDs,” in Conference on Lasers and Electro-Optics, IEEE J. Quantum Electron. 17, 56 (1981).
  9. G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
    [CrossRef]
  10. T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983).
    [CrossRef]
  11. J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” Poster presentation at 1999 Users Workshop—Industrial Liason Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, 8 July 1999.
  12. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997).

1999

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained-quantum-well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

1998

1997

I. Middlemast, J. Sarma, S. Yunus, “High-power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
[CrossRef]

1993

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, C. A. Burrus, “Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with a monolithically integrated waveguide lens for high-power applications,” IEEE Photon. Technol. Lett. 5, 916–919 (1993).
[CrossRef]

1990

S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990).
[CrossRef]

1988

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

1983

T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983).
[CrossRef]

W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

1981

G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1−x)Al(x)As edge-emitting LEDs,” in Conference on Lasers and Electro-Optics, IEEE J. Quantum Electron. 17, 56 (1981).

Alphonse, G. A.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

Brooks, N. S.

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” Poster presentation at 1999 Users Workshop—Industrial Liason Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, 8 July 1999.

Burns, W. K.

W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

Burrus, C. A.

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, C. A. Burrus, “Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with a monolithically integrated waveguide lens for high-power applications,” IEEE Photon. Technol. Lett. 5, 916–919 (1993).
[CrossRef]

Causa, F.

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” Poster presentation at 1999 Users Workshop—Industrial Liason Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, 8 July 1999.

Chapuran, T. E.

S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990).
[CrossRef]

Chen, C.-L.

W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

Davies, G. A.

G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1−x)Al(x)As edge-emitting LEDs,” in Conference on Lasers and Electro-Optics, IEEE J. Quantum Electron. 17, 56 (1981).

Dentai, A. G.

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, C. A. Burrus, “Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with a monolithically integrated waveguide lens for high-power applications,” IEEE Photon. Technol. Lett. 5, 916–919 (1993).
[CrossRef]

Ettenberg, M.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

Gilbert, D. B.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

Goodwin, A. R.

G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1−x)Al(x)As edge-emitting LEDs,” in Conference on Lasers and Electro-Optics, IEEE J. Quantum Electron. 17, 56 (1981).

Harvey, M. G.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

Hirono, T.

Iga, K.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained-quantum-well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Itaya, Y.

Jackson, D. A.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Kadota, Y.

Kambayashi, T.

T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983).
[CrossRef]

Kawaguchi, Y.

Kishi, K.

Kondo, Y.

Koyama, F.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained-quantum-well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, C. A. Burrus, “Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with a monolithically integrated waveguide lens for high-power applications,” IEEE Photon. Technol. Lett. 5, 916–919 (1993).
[CrossRef]

Liou, K.-Y.

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, C. A. Burrus, “Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with a monolithically integrated waveguide lens for high-power applications,” IEEE Photon. Technol. Lett. 5, 916–919 (1993).
[CrossRef]

Middlemast, I.

I. Middlemast, J. Sarma, S. Yunus, “High-power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
[CrossRef]

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” Poster presentation at 1999 Users Workshop—Industrial Liason Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, 8 July 1999.

Moeller, R. P.

W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

Mori, S.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained-quantum-well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Okamoto, H.

Plumb, R. G.

G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1−x)Al(x)As edge-emitting LEDs,” in Conference on Lasers and Electro-Optics, IEEE J. Quantum Electron. 17, 56 (1981).

Podoleanu, A. G.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Rogers, J. A.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Ryan, T.

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” Poster presentation at 1999 Users Workshop—Industrial Liason Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, 8 July 1999.

Sakai, Y.

Sarma, J.

I. Middlemast, J. Sarma, S. Yunus, “High-power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
[CrossRef]

T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983).
[CrossRef]

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” Poster presentation at 1999 Users Workshop—Industrial Liason Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, 8 July 1999.

Tanbun-ek, T.

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, C. A. Burrus, “Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with a monolithically integrated waveguide lens for high-power applications,” IEEE Photon. Technol. Lett. 5, 916–919 (1993).
[CrossRef]

Wada, M.

Wagner, S. S.

S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990).
[CrossRef]

Yamatoya, T.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained-quantum-well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997).

Yunus, S.

I. Middlemast, J. Sarma, S. Yunus, “High-power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
[CrossRef]

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” Poster presentation at 1999 Users Workshop—Industrial Liason Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, 8 July 1999.

Conference on Lasers and Electro-Optics

G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1−x)Al(x)As edge-emitting LEDs,” in Conference on Lasers and Electro-Optics, IEEE J. Quantum Electron. 17, 56 (1981).

Electron. Lett.

S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990).
[CrossRef]

I. Middlemast, J. Sarma, S. Yunus, “High-power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
[CrossRef]

IEEE J. Quantum Electron.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, C. A. Burrus, “Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with a monolithically integrated waveguide lens for high-power applications,” IEEE Photon. Technol. Lett. 5, 916–919 (1993).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained-quantum-well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Other

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” Poster presentation at 1999 Users Workshop—Industrial Liason Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, 8 July 1999.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a TSLED including the etched deflector inclined at an angle θ D with respect to the facet.

Fig. 2
Fig. 2

Top view schematic of an A-TSLED with an etched deflector: shaded area, tapered metal contact of output width W and length L; α, taper angle; D, distance between the taper and the deflector; β, angular displacement of the tapered contact with respect to the normal to the facet; θ D , angular displacement of the deflector with respect to the facet.

Fig. 3
Fig. 3

Optical power output versus input current curves for a range of inhouse-fabricated devices: dashed curve, TSLED (β = 0°) with deflector; dot–dash curve, A-TSLED β = 5° with deflector; dashed curve with symbols (+), TSLED (β = 0°) with AR coating and with deflector; solid curve, A-TSLED β = 10° with deflector. Note that for all devices L = 1000 µm, W = 100 µm, and D = 500 µm.

Fig. 4
Fig. 4

Ray model. Schematic of A-TSLED illustrating a ray AB inclined at an angle θ with respect to the device output facet; s is the coordinate along the ray.

Fig. 5
Fig. 5

Near-intensity profiles of A-TSLED (W = 100 µm, L = 1000 µm, β = 5°): (a) I = 0.5 A, (b) I = 3 A: solid curves, theoretical profile calculated with NA = 0.17; ×, experimental profile measured with NA = 0.17; dashed curve, theoretical profile calculated with NA = 0.65; ●, experimental profile measured with NA = 0.65.

Fig. 6
Fig. 6

Near-intensity profiles of A-TSLED (W = 100 µm, L = 1000 µm) measured at I = 3 A with NA = 0.17: solid curve, theoretical profile for β = 0°; ●, experimental profile for β = 0°; dashed curve, theoretical profile for β = 5°; ×, experimental profile for β = 5°; dash–dot curve, theoretical profile for β = 10°; ◆, experimental profile for β = 10°.

Fig. 7
Fig. 7

Schematic of the experimental apparatus used for spectrally resolved measurements of the near-intensity profiles.

Fig. 8
Fig. 8

Spectrally resolved near-intensity profiles of A-TSLED (W = 100 µm, L = 1000 µm, β = 5°) measured at I = 3 A at the following wavelengths: dotted curve, λ = 876 nm; dashed curve, λ = 873 nm; solid curves, λ = 869 nm: (a) NA = 0.17, (b) NA = 0.65.

Fig. 9
Fig. 9

Far-intensity profiles of A-TSLED with various β (W = 100 µm, L = 1000 µm) obtained at I = 3 A: solid curve, theoretical profile for β = 0°; ●, experimental profile measured for β = 0°; dash–dot curve, theoretical profile for β = 10°; ×, experimental profile measured for β = 10°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dPds=gsPs+δ Nsτspv,
INFx=-θaθa Px, L; θdθ,
IFFθ=-+ Px, L; θdx.

Metrics