Abstract

Two approaches of fabricating grating structures for waveguided plastic dye lasers are described and compared for lasing performance. Rhodamine6G–doped poly(methyl methacrylate) (PMMA) film on a PMMA substrate was used for the waveguide, and a distributed-feedback (DFB) laser operation with a single-propagation mode was demonstrated. The performances of both types of permanent grating structured DFB dye laser were better than those of a DFB dye laser on a plain waveguide with a dynamic grating formed by the interference of two pump beams. Wide tuning range is expected by use of a multistripe DFB laser with different grating pitches.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik, C. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
    [CrossRef]
  2. C. Shank, J. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
    [CrossRef]
  3. T. Aoyagi, Y. Aoyagi, K. Toyoda, S. Namba, “Tunable distributed-feedback dye laser,” Opt. Commun. 18, 44–45 (1976).
    [CrossRef]
  4. S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
    [CrossRef]
  5. Z. Bor, A. Müller, B. Racz, F. P. Schäfer, “Ultrashort pulse generation by distributed feedback dye lasers I (temporal characteristics),” Appl. Phys. B 27, 9–14 (1982).
    [CrossRef]
  6. Z. Bor, F. Schäfer, “New single-pulse generation technique for distributed feedback dye laser,” Appl. Phys. B 31, 209–213 (1983).
    [CrossRef]
  7. B. H. Soffer, B. B. Mcfarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
    [CrossRef]
  8. S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
    [CrossRef]
  9. X.-L. Zhu, S.-K. Lam, D. Lo, “Distributed-feedback dye-doped solgel silica lasers,” Appl. Opt. 39, 3104–3107 (2000).
    [CrossRef]
  10. W. J. Wadsworth, I. T. McKinnie, A. D. Woolhouse, T. G. Haskell, “Efficient distributed feedback solid state dye laser with a dynamic grating,” Appl. Phys. B 69, 163–165 (1999).
    [CrossRef]
  11. Y. Oki, N. Yamamoto, K. Imamura, M. Maeda, “Distributed feedback operation in waveguided plastic dye lasers,” in Techn. Rep. Kyushu Univ. 69, 277–283 (1996), in Japanese.
  12. M. Maeda, Y. Oki, K. Imamura, “Ultrashort pulse generation from an integrated single-chip dye laser,” IEEE J. Quantum Electron. 33, 2146–2149 (1997).
    [CrossRef]
  13. Y. Oki, K. Ohno, M. Maeda, “Tunable ultrashort pulse generation from a waveguided laser with premixed-dye-doped plastic film,” Jpn. J. Appl. Phys. 37, 6403–6407 (1998).
    [CrossRef]
  14. A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, S. Popov, “Solid-state dye laser with modified poly(methyl methacrylate) doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
    [CrossRef] [PubMed]
  15. S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
    [CrossRef]
  16. A. Costrla, I. Garcia-Moreno, R. Sastre, D. W. Coutts, C. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).
    [CrossRef]
  17. F. J. Duarte, “Multiple-prism grating solid-state dye laser oscillator: optimized architecture,” Appl. Opt. 38, 6347–6349 (1999).
    [CrossRef]
  18. K. Horie, S. Taniguchi, eds., Handbook of Functional Organic Materials for Optoelectronics (Asakura Shuppan, Tokyo, 1995), p. 411, in Japanese.

2001 (1)

A. Costrla, I. Garcia-Moreno, R. Sastre, D. W. Coutts, C. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).
[CrossRef]

2000 (1)

1999 (3)

W. J. Wadsworth, I. T. McKinnie, A. D. Woolhouse, T. G. Haskell, “Efficient distributed feedback solid state dye laser with a dynamic grating,” Appl. Phys. B 69, 163–165 (1999).
[CrossRef]

F. J. Duarte, “Multiple-prism grating solid-state dye laser oscillator: optimized architecture,” Appl. Opt. 38, 6347–6349 (1999).
[CrossRef]

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

1998 (1)

Y. Oki, K. Ohno, M. Maeda, “Tunable ultrashort pulse generation from a waveguided laser with premixed-dye-doped plastic film,” Jpn. J. Appl. Phys. 37, 6403–6407 (1998).
[CrossRef]

1997 (1)

M. Maeda, Y. Oki, K. Imamura, “Ultrashort pulse generation from an integrated single-chip dye laser,” IEEE J. Quantum Electron. 33, 2146–2149 (1997).
[CrossRef]

1996 (1)

Y. Oki, N. Yamamoto, K. Imamura, M. Maeda, “Distributed feedback operation in waveguided plastic dye lasers,” in Techn. Rep. Kyushu Univ. 69, 277–283 (1996), in Japanese.

1995 (1)

1983 (1)

Z. Bor, F. Schäfer, “New single-pulse generation technique for distributed feedback dye laser,” Appl. Phys. B 31, 209–213 (1983).
[CrossRef]

1982 (1)

Z. Bor, A. Müller, B. Racz, F. P. Schäfer, “Ultrashort pulse generation by distributed feedback dye lasers I (temporal characteristics),” Appl. Phys. B 27, 9–14 (1982).
[CrossRef]

1980 (2)

S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
[CrossRef]

S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
[CrossRef]

1976 (1)

T. Aoyagi, Y. Aoyagi, K. Toyoda, S. Namba, “Tunable distributed-feedback dye laser,” Opt. Commun. 18, 44–45 (1976).
[CrossRef]

1971 (2)

H. Kogelnik, C. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

C. Shank, J. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

1967 (1)

B. H. Soffer, B. B. Mcfarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Aoyagi, T.

T. Aoyagi, Y. Aoyagi, K. Toyoda, S. Namba, “Tunable distributed-feedback dye laser,” Opt. Commun. 18, 44–45 (1976).
[CrossRef]

Aoyagi, Y.

T. Aoyagi, Y. Aoyagi, K. Toyoda, S. Namba, “Tunable distributed-feedback dye laser,” Opt. Commun. 18, 44–45 (1976).
[CrossRef]

Bjorkholm, J.

C. Shank, J. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

Bor, Z.

Z. Bor, F. Schäfer, “New single-pulse generation technique for distributed feedback dye laser,” Appl. Phys. B 31, 209–213 (1983).
[CrossRef]

Z. Bor, A. Müller, B. Racz, F. P. Schäfer, “Ultrashort pulse generation by distributed feedback dye lasers I (temporal characteristics),” Appl. Phys. B 27, 9–14 (1982).
[CrossRef]

Boyd, J.

S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
[CrossRef]

S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
[CrossRef]

Costrla, A.

A. Costrla, I. Garcia-Moreno, R. Sastre, D. W. Coutts, C. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).
[CrossRef]

Coutts, D. W.

A. Costrla, I. Garcia-Moreno, R. Sastre, D. W. Coutts, C. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).
[CrossRef]

Duarte, F. J.

Garcia-Moreno, I.

A. Costrla, I. Garcia-Moreno, R. Sastre, D. W. Coutts, C. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).
[CrossRef]

Giffin, S. M.

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Haskell, T. G.

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

W. J. Wadsworth, I. T. McKinnie, A. D. Woolhouse, T. G. Haskell, “Efficient distributed feedback solid state dye laser with a dynamic grating,” Appl. Phys. B 69, 163–165 (1999).
[CrossRef]

Imamura, K.

M. Maeda, Y. Oki, K. Imamura, “Ultrashort pulse generation from an integrated single-chip dye laser,” IEEE J. Quantum Electron. 33, 2146–2149 (1997).
[CrossRef]

Y. Oki, N. Yamamoto, K. Imamura, M. Maeda, “Distributed feedback operation in waveguided plastic dye lasers,” in Techn. Rep. Kyushu Univ. 69, 277–283 (1996), in Japanese.

Jackson, H.

S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
[CrossRef]

S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
[CrossRef]

Kaivola, M.

Kogelnik, H.

C. Shank, J. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

H. Kogelnik, C. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

Lam, S.-K.

Lo, D.

Maeda, M.

Y. Oki, K. Ohno, M. Maeda, “Tunable ultrashort pulse generation from a waveguided laser with premixed-dye-doped plastic film,” Jpn. J. Appl. Phys. 37, 6403–6407 (1998).
[CrossRef]

M. Maeda, Y. Oki, K. Imamura, “Ultrashort pulse generation from an integrated single-chip dye laser,” IEEE J. Quantum Electron. 33, 2146–2149 (1997).
[CrossRef]

Y. Oki, N. Yamamoto, K. Imamura, M. Maeda, “Distributed feedback operation in waveguided plastic dye lasers,” in Techn. Rep. Kyushu Univ. 69, 277–283 (1996), in Japanese.

Maslyukov, A.

Mcfarland, B. B.

B. H. Soffer, B. B. Mcfarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

McKinnie, I. T.

W. J. Wadsworth, I. T. McKinnie, A. D. Woolhouse, T. G. Haskell, “Efficient distributed feedback solid state dye laser with a dynamic grating,” Appl. Phys. B 69, 163–165 (1999).
[CrossRef]

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Müller, A.

Z. Bor, A. Müller, B. Racz, F. P. Schäfer, “Ultrashort pulse generation by distributed feedback dye lasers I (temporal characteristics),” Appl. Phys. B 27, 9–14 (1982).
[CrossRef]

Namba, S.

T. Aoyagi, Y. Aoyagi, K. Toyoda, S. Namba, “Tunable distributed-feedback dye laser,” Opt. Commun. 18, 44–45 (1976).
[CrossRef]

Nyholm, K.

Ohno, K.

Y. Oki, K. Ohno, M. Maeda, “Tunable ultrashort pulse generation from a waveguided laser with premixed-dye-doped plastic film,” Jpn. J. Appl. Phys. 37, 6403–6407 (1998).
[CrossRef]

Oki, Y.

Y. Oki, K. Ohno, M. Maeda, “Tunable ultrashort pulse generation from a waveguided laser with premixed-dye-doped plastic film,” Jpn. J. Appl. Phys. 37, 6403–6407 (1998).
[CrossRef]

M. Maeda, Y. Oki, K. Imamura, “Ultrashort pulse generation from an integrated single-chip dye laser,” IEEE J. Quantum Electron. 33, 2146–2149 (1997).
[CrossRef]

Y. Oki, N. Yamamoto, K. Imamura, M. Maeda, “Distributed feedback operation in waveguided plastic dye lasers,” in Techn. Rep. Kyushu Univ. 69, 277–283 (1996), in Japanese.

Popov, S.

Racz, B.

Z. Bor, A. Müller, B. Racz, F. P. Schäfer, “Ultrashort pulse generation by distributed feedback dye lasers I (temporal characteristics),” Appl. Phys. B 27, 9–14 (1982).
[CrossRef]

Sastre, R.

A. Costrla, I. Garcia-Moreno, R. Sastre, D. W. Coutts, C. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).
[CrossRef]

Schäfer, F.

Z. Bor, F. Schäfer, “New single-pulse generation technique for distributed feedback dye laser,” Appl. Phys. B 31, 209–213 (1983).
[CrossRef]

Schäfer, F. P.

Z. Bor, A. Müller, B. Racz, F. P. Schäfer, “Ultrashort pulse generation by distributed feedback dye lasers I (temporal characteristics),” Appl. Phys. B 27, 9–14 (1982).
[CrossRef]

Shank, C.

H. Kogelnik, C. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

C. Shank, J. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

Smith, G. J.

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Soffer, B. H.

B. H. Soffer, B. B. Mcfarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Sokolov, S.

Sriram, S.

S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
[CrossRef]

S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
[CrossRef]

Toyoda, K.

T. Aoyagi, Y. Aoyagi, K. Toyoda, S. Namba, “Tunable distributed-feedback dye laser,” Opt. Commun. 18, 44–45 (1976).
[CrossRef]

Wadsworth, W. J.

W. J. Wadsworth, I. T. McKinnie, A. D. Woolhouse, T. G. Haskell, “Efficient distributed feedback solid state dye laser with a dynamic grating,” Appl. Phys. B 69, 163–165 (1999).
[CrossRef]

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Webb, C.

A. Costrla, I. Garcia-Moreno, R. Sastre, D. W. Coutts, C. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).
[CrossRef]

Woolhouse, A. D.

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

W. J. Wadsworth, I. T. McKinnie, A. D. Woolhouse, T. G. Haskell, “Efficient distributed feedback solid state dye laser with a dynamic grating,” Appl. Phys. B 69, 163–165 (1999).
[CrossRef]

Yamamoto, N.

Y. Oki, N. Yamamoto, K. Imamura, M. Maeda, “Distributed feedback operation in waveguided plastic dye lasers,” in Techn. Rep. Kyushu Univ. 69, 277–283 (1996), in Japanese.

Zhu, X.-L.

Appl. Opt. (3)

Appl. Phys. B (3)

W. J. Wadsworth, I. T. McKinnie, A. D. Woolhouse, T. G. Haskell, “Efficient distributed feedback solid state dye laser with a dynamic grating,” Appl. Phys. B 69, 163–165 (1999).
[CrossRef]

Z. Bor, A. Müller, B. Racz, F. P. Schäfer, “Ultrashort pulse generation by distributed feedback dye lasers I (temporal characteristics),” Appl. Phys. B 27, 9–14 (1982).
[CrossRef]

Z. Bor, F. Schäfer, “New single-pulse generation technique for distributed feedback dye laser,” Appl. Phys. B 31, 209–213 (1983).
[CrossRef]

Appl. Phys. Lett. (6)

B. H. Soffer, B. B. Mcfarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
[CrossRef]

H. Kogelnik, C. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

C. Shank, J. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

S. Sriram, H. Jackson, J. Boyd, “Distributed-feedback dye laser integrated with a channel waveguide formed on silicon,” Appl. Phys. Lett. 36, 721–723 (1980).
[CrossRef]

A. Costrla, I. Garcia-Moreno, R. Sastre, D. W. Coutts, C. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Maeda, Y. Oki, K. Imamura, “Ultrashort pulse generation from an integrated single-chip dye laser,” IEEE J. Quantum Electron. 33, 2146–2149 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Oki, K. Ohno, M. Maeda, “Tunable ultrashort pulse generation from a waveguided laser with premixed-dye-doped plastic film,” Jpn. J. Appl. Phys. 37, 6403–6407 (1998).
[CrossRef]

Opt. Commun. (2)

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

T. Aoyagi, Y. Aoyagi, K. Toyoda, S. Namba, “Tunable distributed-feedback dye laser,” Opt. Commun. 18, 44–45 (1976).
[CrossRef]

Techn. Rep. Kyushu Univ. (1)

Y. Oki, N. Yamamoto, K. Imamura, M. Maeda, “Distributed feedback operation in waveguided plastic dye lasers,” in Techn. Rep. Kyushu Univ. 69, 277–283 (1996), in Japanese.

Other (1)

K. Horie, S. Taniguchi, eds., Handbook of Functional Organic Materials for Optoelectronics (Asakura Shuppan, Tokyo, 1995), p. 411, in Japanese.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Two fabrication schemes for the photofabricated-waveguided DFB laser based on Rhodamine6G–doped PMMA. (a) type I and (b) type II.

Fig. 2
Fig. 2

Refractive index of PMMA as a function of a concentration of dopant. Diamonds, 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM); triangles, Coumarin 500; squares, anthracene; circles, Rhodamine6G.

Fig. 3
Fig. 3

Estimation of equivalent refractive indices of propagation modes. Solid curves, TE modes; dashed curves, TM modes. Thin curves, PMMA substrate (n sub = 1.493); thick curves, FSL5 substrate (n sub = 1.486).

Fig. 4
Fig. 4

Experimental setup for fabrication of the grating on the waveguide by use of UV exposure.

Fig. 5
Fig. 5

Surface morphology of the grating on the type I DFB-waveguided laser by use of an atomic force microscope.

Fig. 6
Fig. 6

Input–output characteristics of different waveguided DFB lasers. Circles, holographic DFB; triangles and squares, type I and type II fabricated DFB lasers, respectively. Thickness of the waveguide was 2.8 µm, and the concentration of Rhodamine 6G was 15.8 mM.

Fig. 7
Fig. 7

Spectra of DFB laser output. (a) Holographically pumped DFB laser and (b) type I and (c) type II fabricated DFB lasers. The pumping fluences of (a), (b), and (c) were 2.2, 1.2, and 1.1 mJ/cm2, respectively.

Fig. 8
Fig. 8

Durability test for different types of DFB laser. Circles, holographic DFB; triangles and squares, type I and type II fabricated DFB lasers, respectively.

Fig. 9
Fig. 9

Temperature tuning of the type I fabricated DFB laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ2neq=λP2 sin θ=Λ,
n=1.4928-1.1×10-4T-2.1×10-7T2,

Metrics