Abstract

We present an imaging technique to measure static surface displacements of electronic components. A device is supplied by a transient current that creates a variation of temperature, thus a surface displacement. To measure the latter, a setup that is based on a Michelson interferometer is used. To avoid the phenomenon of speckle and the drawbacks inherent to it, we use a light emitting diode as the light source for the interferometer. The detector is a visible CCD camera that analyzes the optical signal containing the information of surface displacement of the device. Combining images, we extract the amplitude of the surface displacement. Out-of-plane surface-displacement images of a thermoelectric device are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by Electronic Speckle Pattern Interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
    [CrossRef]
  2. T. Pfeifer, H. Mischo, A. Ettemeyer, Z. Wang, R. A. Wegner, “Strain/stress measurements using electronic speckle pattern interferometry,” in Three-Dimensional Imaging, Optical Metrology, and Inspection IV, K. G. Harding, D. J. Svetkoff, K. Creath, J. S. Harris, eds., Proc. SPIE3520, 262–271 (1998).
    [CrossRef]
  3. S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).
  4. S. Dilhaire, S. Grauby, S. Jorez, J.-M. Rampnoux, W. Claeys, “Modulated thermomechanical imaging using heterodyne ESPI,” Rev. Sci. Instrum., submitted for publication.
  5. J. W. Goodman, “An introduction to the principles and applications of holography,” Proceedings of the SPIE, 59, n°9, pp. 1292–1304 (1971).
  6. R. Jones, C. Wykes, Holographic and Speckle Pattern Interferometry (Cambridge U. Press, Cambridge, 1989).
  7. B. Sharp, “Electronic Speckle Pattern Interferometry (ESPI),” Opt. Lasers Eng. 11, 241–255 (1989).
    [CrossRef]
  8. P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris), 26, 251–265 (1995).
    [CrossRef]
  9. S. Lévèque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photons paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  10. S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible CCD camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
    [CrossRef]
  11. A. Dubois, M. Lebec, A. C. Boccara, “Real-time reflectivity and topography imagery of depth-resolted microscopic surfaces,” Opt. Lett. 24, 309–311 (1999).
    [CrossRef]
  12. H. Glosch, M. Ashauer, U. Pfeiffer, W. Lang, “A thermoelectric converter for energy supply,” Sens. Actuators 74, 246–250 (1999).
    [CrossRef]
  13. D. D. L. Wijngaards, S. H. Kong, M. Bartek, R. F. Wolffenbuttel, “Design and fabrication of on-chip integrated polySiGe and polySi Peltier devices,” Sens. Actuators 85, 316–323 (2000).
    [CrossRef]

2000 (1)

D. D. L. Wijngaards, S. H. Kong, M. Bartek, R. F. Wolffenbuttel, “Design and fabrication of on-chip integrated polySiGe and polySi Peltier devices,” Sens. Actuators 85, 316–323 (2000).
[CrossRef]

1999 (5)

S. Lévèque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photons paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

A. Dubois, M. Lebec, A. C. Boccara, “Real-time reflectivity and topography imagery of depth-resolted microscopic surfaces,” Opt. Lett. 24, 309–311 (1999).
[CrossRef]

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible CCD camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

H. Glosch, M. Ashauer, U. Pfeiffer, W. Lang, “A thermoelectric converter for energy supply,” Sens. Actuators 74, 246–250 (1999).
[CrossRef]

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

1998 (1)

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by Electronic Speckle Pattern Interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

1995 (1)

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris), 26, 251–265 (1995).
[CrossRef]

1989 (1)

B. Sharp, “Electronic Speckle Pattern Interferometry (ESPI),” Opt. Lasers Eng. 11, 241–255 (1989).
[CrossRef]

Ashauer, M.

H. Glosch, M. Ashauer, U. Pfeiffer, W. Lang, “A thermoelectric converter for energy supply,” Sens. Actuators 74, 246–250 (1999).
[CrossRef]

Bartek, M.

D. D. L. Wijngaards, S. H. Kong, M. Bartek, R. F. Wolffenbuttel, “Design and fabrication of on-chip integrated polySiGe and polySi Peltier devices,” Sens. Actuators 85, 316–323 (2000).
[CrossRef]

Boccara, A. C.

Claeys, W.

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by Electronic Speckle Pattern Interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

S. Dilhaire, S. Grauby, S. Jorez, J.-M. Rampnoux, W. Claeys, “Modulated thermomechanical imaging using heterodyne ESPI,” Rev. Sci. Instrum., submitted for publication.

Cornet, A.

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by Electronic Speckle Pattern Interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Dilhaire, S.

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by Electronic Speckle Pattern Interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

S. Dilhaire, S. Grauby, S. Jorez, J.-M. Rampnoux, W. Claeys, “Modulated thermomechanical imaging using heterodyne ESPI,” Rev. Sci. Instrum., submitted for publication.

Dubois, A.

Ettemeyer, A.

T. Pfeifer, H. Mischo, A. Ettemeyer, Z. Wang, R. A. Wegner, “Strain/stress measurements using electronic speckle pattern interferometry,” in Three-Dimensional Imaging, Optical Metrology, and Inspection IV, K. G. Harding, D. J. Svetkoff, K. Creath, J. S. Harris, eds., Proc. SPIE3520, 262–271 (1998).
[CrossRef]

Forget, B. C.

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible CCD camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

Fournier, D.

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible CCD camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

Gleyzes, P.

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris), 26, 251–265 (1995).
[CrossRef]

Glosch, H.

H. Glosch, M. Ashauer, U. Pfeiffer, W. Lang, “A thermoelectric converter for energy supply,” Sens. Actuators 74, 246–250 (1999).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “An introduction to the principles and applications of holography,” Proceedings of the SPIE, 59, n°9, pp. 1292–1304 (1971).

Grauby, S.

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible CCD camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

S. Dilhaire, S. Grauby, S. Jorez, J.-M. Rampnoux, W. Claeys, “Modulated thermomechanical imaging using heterodyne ESPI,” Rev. Sci. Instrum., submitted for publication.

Guernet, F.

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris), 26, 251–265 (1995).
[CrossRef]

Holé, S.

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible CCD camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

Joannes, L.

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by Electronic Speckle Pattern Interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Pattern Interferometry (Cambridge U. Press, Cambridge, 1989).

Jorez, S.

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

S. Dilhaire, S. Grauby, S. Jorez, J.-M. Rampnoux, W. Claeys, “Modulated thermomechanical imaging using heterodyne ESPI,” Rev. Sci. Instrum., submitted for publication.

Kong, S. H.

D. D. L. Wijngaards, S. H. Kong, M. Bartek, R. F. Wolffenbuttel, “Design and fabrication of on-chip integrated polySiGe and polySi Peltier devices,” Sens. Actuators 85, 316–323 (2000).
[CrossRef]

Lang, W.

H. Glosch, M. Ashauer, U. Pfeiffer, W. Lang, “A thermoelectric converter for energy supply,” Sens. Actuators 74, 246–250 (1999).
[CrossRef]

Lebec, M.

Lévèque, S.

Mischo, H.

T. Pfeifer, H. Mischo, A. Ettemeyer, Z. Wang, R. A. Wegner, “Strain/stress measurements using electronic speckle pattern interferometry,” in Three-Dimensional Imaging, Optical Metrology, and Inspection IV, K. G. Harding, D. J. Svetkoff, K. Creath, J. S. Harris, eds., Proc. SPIE3520, 262–271 (1998).
[CrossRef]

Nassim, K.

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by Electronic Speckle Pattern Interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Pfeifer, T.

T. Pfeifer, H. Mischo, A. Ettemeyer, Z. Wang, R. A. Wegner, “Strain/stress measurements using electronic speckle pattern interferometry,” in Three-Dimensional Imaging, Optical Metrology, and Inspection IV, K. G. Harding, D. J. Svetkoff, K. Creath, J. S. Harris, eds., Proc. SPIE3520, 262–271 (1998).
[CrossRef]

Pfeiffer, U.

H. Glosch, M. Ashauer, U. Pfeiffer, W. Lang, “A thermoelectric converter for energy supply,” Sens. Actuators 74, 246–250 (1999).
[CrossRef]

Rampnoux, J.-M.

S. Dilhaire, S. Grauby, S. Jorez, J.-M. Rampnoux, W. Claeys, “Modulated thermomechanical imaging using heterodyne ESPI,” Rev. Sci. Instrum., submitted for publication.

Saint-Jalmes, H.

Schaub, E.

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by Electronic Speckle Pattern Interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Sharp, B.

B. Sharp, “Electronic Speckle Pattern Interferometry (ESPI),” Opt. Lasers Eng. 11, 241–255 (1989).
[CrossRef]

Wang, Z.

T. Pfeifer, H. Mischo, A. Ettemeyer, Z. Wang, R. A. Wegner, “Strain/stress measurements using electronic speckle pattern interferometry,” in Three-Dimensional Imaging, Optical Metrology, and Inspection IV, K. G. Harding, D. J. Svetkoff, K. Creath, J. S. Harris, eds., Proc. SPIE3520, 262–271 (1998).
[CrossRef]

Wegner, R. A.

T. Pfeifer, H. Mischo, A. Ettemeyer, Z. Wang, R. A. Wegner, “Strain/stress measurements using electronic speckle pattern interferometry,” in Three-Dimensional Imaging, Optical Metrology, and Inspection IV, K. G. Harding, D. J. Svetkoff, K. Creath, J. S. Harris, eds., Proc. SPIE3520, 262–271 (1998).
[CrossRef]

Wijngaards, D. D. L.

D. D. L. Wijngaards, S. H. Kong, M. Bartek, R. F. Wolffenbuttel, “Design and fabrication of on-chip integrated polySiGe and polySi Peltier devices,” Sens. Actuators 85, 316–323 (2000).
[CrossRef]

Wolffenbuttel, R. F.

D. D. L. Wijngaards, S. H. Kong, M. Bartek, R. F. Wolffenbuttel, “Design and fabrication of on-chip integrated polySiGe and polySi Peltier devices,” Sens. Actuators 85, 316–323 (2000).
[CrossRef]

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Pattern Interferometry (Cambridge U. Press, Cambridge, 1989).

J. Opt. (Paris) (1)

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris), 26, 251–265 (1995).
[CrossRef]

Microelectron. Reliab. (2)

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by Electronic Speckle Pattern Interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Opt. Lasers Eng. (1)

B. Sharp, “Electronic Speckle Pattern Interferometry (ESPI),” Opt. Lasers Eng. 11, 241–255 (1989).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible CCD camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

Sens. Actuators (2)

H. Glosch, M. Ashauer, U. Pfeiffer, W. Lang, “A thermoelectric converter for energy supply,” Sens. Actuators 74, 246–250 (1999).
[CrossRef]

D. D. L. Wijngaards, S. H. Kong, M. Bartek, R. F. Wolffenbuttel, “Design and fabrication of on-chip integrated polySiGe and polySi Peltier devices,” Sens. Actuators 85, 316–323 (2000).
[CrossRef]

Other (4)

S. Dilhaire, S. Grauby, S. Jorez, J.-M. Rampnoux, W. Claeys, “Modulated thermomechanical imaging using heterodyne ESPI,” Rev. Sci. Instrum., submitted for publication.

J. W. Goodman, “An introduction to the principles and applications of holography,” Proceedings of the SPIE, 59, n°9, pp. 1292–1304 (1971).

R. Jones, C. Wykes, Holographic and Speckle Pattern Interferometry (Cambridge U. Press, Cambridge, 1989).

T. Pfeifer, H. Mischo, A. Ettemeyer, Z. Wang, R. A. Wegner, “Strain/stress measurements using electronic speckle pattern interferometry,” in Three-Dimensional Imaging, Optical Metrology, and Inspection IV, K. G. Harding, D. J. Svetkoff, K. Creath, J. S. Harris, eds., Proc. SPIE3520, 262–271 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Images of the same device illuminated by (a) an incoherent light (LED) and (b) a coherent light (He–Ne laser).

Fig. 2
Fig. 2

Experimental setup. IF, interferential filter; PBS, polarized beam splitter; L1, L2, lenses; M3, mirror; P1, sheet polarizer; P2, P3, quarter-wave plates; P4, sheet polarizer.

Fig. 3
Fig. 3

Principle of Peltier effect.

Fig. 4
Fig. 4

Thermoelectric device.

Fig. 5
Fig. 5

Image of the surface displacement of a thermoelectric element for a supplying dc of 200 mA in the region-P-to-region-N direction.

Fig. 6
Fig. 6

Image of the surface displacement of a thermoelectric element supplied by a dc (200 mA) in the region-N-to-region-P direction.

Fig. 7
Fig. 7

Peltier contribution to the surface displacement for a supplying dc of 200 mA.

Fig. 8
Fig. 8

Joule contribution to the surface displacement for a supplying dc of 200 mA.

Fig. 9
Fig. 9

Amplitude of the surface displacement versus the supplying dc.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Ip=I021+V cos ϕ,
Ip=I021+V cos ϕ0.
I1=I021+V cos ϕ0,
I2=I021-V sin ϕ0,
I3=I021-V cos ϕ0,
I4=I021+V sin ϕ0.
arctanI4-I2I1-I3=ϕ0π.
ϕ0=4πλ Δz,
Ip=I021+V cosϕ0+ϕd,
arctanI4-I2I1-I3=ϕ0+ϕdπ,
ϕdπ=arctanI4-I2I1-I3-arctanI4-I2I1-I3.
δ=λ4π ϕd,
D1=a×I+b×I2,
D2=a×-I+b×-I2,

Metrics