Abstract

A number of gating schemes to minimize the long-term afterpulse signal in photomultipliers have been evaluated. Blocking the excitation pulse by gating the photocathode was found to reduce the gate-on afterpulse background by a factor of 230 over that for nongated operation. This afterpulse or signal-induced background (SIB), which is particularly troublesome in stratospheric lidar measurements, appears as a weak exponentially decaying signal extending into the millisecond region after the photomultiplier tube (PMT) is exposed to an intense submicrosecond optical pulse. Photocathode gating is not feasible in PMTs with semitransparent bialkali photocathodes because of their slow gate response time, but is easily implemented in PMTs with opaque bialkali or semitransparent multialkali (S-20) photocathodes that can be gated with nanosecond response. In those PMTs with semitransparent bialkali photocathodes, a gated (adjacent) focus grid (if available) also produces a significant reduction in the SIB.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Engstrom, RCA Photomultiplier Handbook, Pub. PMT-62 (RCA Corp., Princeton, N.J., 1980); available from Burle Industries Inc., Lancaster, Pa., as Pub. TP-136, 1989.
  2. Photomultiplier Tubes: Principles and Applications, D-PMT-AB/USA (Philips Photonics, Slaterville, R.I., 1994).
  3. L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
    [CrossRef]
  4. H. R. Krall, “Extraneous light emission from photomultipliers,” IEEE Trans. Nucl. Sci. NS-14, 455–459 (1967).
    [CrossRef]
  5. Y. Zhao, “Signal-induced fluorescence in photomultipliers in differential absorption lidar systems,” Appl. Opt. 38, 4639–4648 (1999).
    [CrossRef]
  6. R. Hearing, A. G. Wright, “Recent advances in photomultipliers for low level applications,” IEEE Trans. Nucl. Sci. NS-26, 368–372 (1979).
    [CrossRef]
  7. W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
    [CrossRef]
  8. I. S. McDermid, T. D. Walsh, A. Deslis, M. L. White, “Optical systems design for a stratospheric lidar system,” Appl. Opt. 34, 6201–6210 (1995).
    [CrossRef] [PubMed]
  9. A. A. Voronin, I. F. Yaroshenko, “Afterpulses in an electron multiplier,” J. Commun. Technol. Electron. 40, 49–51 (1995).
  10. C. K. Williamson, R. J. De Young, “Method for the reduction of signal-induced noise in photomultiplier tubes,” Appl. Opt. 39, 1973–1979 (2000).
    [CrossRef]
  11. R. Wardle, “Gating photomultipliers,” Pub. R/P061 (Thorn EMI Electron Tubes Ltd., Ruislip, Middlesex, UK, 1982).
  12. D. S. Hanselman, R. Withnell, G. M. Hieftje, “Side-on photomultiplier gating system for Thompson scattering and laser-excited atomic fluorescence spectroscopy,” Appl. Spectrosc. 45, 1553–1560 (1991).
    [CrossRef]
  13. J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
    [CrossRef]
  14. M. P. Bristow, D. H. Bundy, A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437–4452 (1995).
    [CrossRef] [PubMed]
  15. M. P. Bristow, “Lidar-signal compression by photomultiplier gain modulation: influence of detector nonlinearity,” Appl. Opt. 37, 6468–6469 (1998).
    [CrossRef]
  16. U. Farinelli, R. Malvano, “Pulsing of photomultipliers,” Rev. Sci. Instrum. 29, 699–701 (1958).
    [CrossRef]
  17. M. R. Sené, “A simple gating system for the Hamamatsu R1250 photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 278, 503–506 (1989).
    [CrossRef]
  18. B. L. Elphick, “A method of applying an avalanche transistor generated 70ns gating pulse to a focused photomultiplier,” J. Phys. E 2, 953–955 (1969).
    [CrossRef]
  19. B. H. Candy, “Photomultiplier characteristics and practice relevant to photon counting,” Rev. Sci. Instrum. 56, 183–193 (1985).
    [CrossRef]
  20. S. Minami, K. Nishikawa, “A signal sampling photomultiplier circuit,” Appl. Opt. 5, 173–174 (1966).
    [CrossRef] [PubMed]
  21. K. P. Carney, J. M. Goldberg, “An inexpensive circuit for pulsing-off a side-window photomultiplier tube,” Appl. Spectrosc. 41, 308–311 (1987).
    [CrossRef]
  22. R. W. Simpson, Y. Talmi, “Medium speed gating of ISIT tubes,” Rev. Sci. Instrum. 48, 1295–1297 (1977).
    [CrossRef]
  23. “Gated operation of OMA-2 detectors,” Electro-Optical Instrument Application Note, TN 181 (EG&G Princeton Applied Research, Princeton, N. J., 1981).
  24. M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods Phys. Res. 196, 199–202 (1982).
    [CrossRef]
  25. R. B. Murray, J. J. Manning, “Response of end-window photomultiplier tubes as a function of temperature,” IEEE Trans. Nucl. Sci. NS-7, 80–86 (1960).
  26. H. M. Araújo, V. Y. Chepel, M. I. Lopes, J. van der Marel, R. Ferreira Marques, A J P L. Policarpo, “Low temperature performance of photomultiplier tubes illuminated in pulsed mode by visible and vacuum ultraviolet light,” IEEE Trans. Nucl. Sci. 45, 542–549 (1998).

2000 (1)

1999 (1)

1998 (2)

H. M. Araújo, V. Y. Chepel, M. I. Lopes, J. van der Marel, R. Ferreira Marques, A J P L. Policarpo, “Low temperature performance of photomultiplier tubes illuminated in pulsed mode by visible and vacuum ultraviolet light,” IEEE Trans. Nucl. Sci. 45, 542–549 (1998).

M. P. Bristow, “Lidar-signal compression by photomultiplier gain modulation: influence of detector nonlinearity,” Appl. Opt. 37, 6468–6469 (1998).
[CrossRef]

1995 (3)

1992 (2)

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
[CrossRef]

1991 (1)

1989 (1)

M. R. Sené, “A simple gating system for the Hamamatsu R1250 photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 278, 503–506 (1989).
[CrossRef]

1987 (1)

1985 (1)

B. H. Candy, “Photomultiplier characteristics and practice relevant to photon counting,” Rev. Sci. Instrum. 56, 183–193 (1985).
[CrossRef]

1982 (1)

M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods Phys. Res. 196, 199–202 (1982).
[CrossRef]

1979 (1)

R. Hearing, A. G. Wright, “Recent advances in photomultipliers for low level applications,” IEEE Trans. Nucl. Sci. NS-26, 368–372 (1979).
[CrossRef]

1977 (1)

R. W. Simpson, Y. Talmi, “Medium speed gating of ISIT tubes,” Rev. Sci. Instrum. 48, 1295–1297 (1977).
[CrossRef]

1975 (1)

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

1969 (1)

B. L. Elphick, “A method of applying an avalanche transistor generated 70ns gating pulse to a focused photomultiplier,” J. Phys. E 2, 953–955 (1969).
[CrossRef]

1967 (1)

H. R. Krall, “Extraneous light emission from photomultipliers,” IEEE Trans. Nucl. Sci. NS-14, 455–459 (1967).
[CrossRef]

1966 (1)

1960 (1)

R. B. Murray, J. J. Manning, “Response of end-window photomultiplier tubes as a function of temperature,” IEEE Trans. Nucl. Sci. NS-7, 80–86 (1960).

1958 (1)

U. Farinelli, R. Malvano, “Pulsing of photomultipliers,” Rev. Sci. Instrum. 29, 699–701 (1958).
[CrossRef]

Araújo, H. M.

H. M. Araújo, V. Y. Chepel, M. I. Lopes, J. van der Marel, R. Ferreira Marques, A J P L. Policarpo, “Low temperature performance of photomultiplier tubes illuminated in pulsed mode by visible and vacuum ultraviolet light,” IEEE Trans. Nucl. Sci. 45, 542–549 (1998).

Barisas, B. G.

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

Bristow, M. P.

Bundy, D. H.

Campbell, L.

L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
[CrossRef]

Candy, B. H.

B. H. Candy, “Photomultiplier characteristics and practice relevant to photon counting,” Rev. Sci. Instrum. 56, 183–193 (1985).
[CrossRef]

Carney, K. P.

Chepel, V. Y.

H. M. Araújo, V. Y. Chepel, M. I. Lopes, J. van der Marel, R. Ferreira Marques, A J P L. Policarpo, “Low temperature performance of photomultiplier tubes illuminated in pulsed mode by visible and vacuum ultraviolet light,” IEEE Trans. Nucl. Sci. 45, 542–549 (1998).

De Young, R. J.

Deslis, A.

Elphick, B. L.

B. L. Elphick, “A method of applying an avalanche transistor generated 70ns gating pulse to a focused photomultiplier,” J. Phys. E 2, 953–955 (1969).
[CrossRef]

Engstrom, R. W.

R. W. Engstrom, RCA Photomultiplier Handbook, Pub. PMT-62 (RCA Corp., Princeton, N.J., 1980); available from Burle Industries Inc., Lancaster, Pa., as Pub. TP-136, 1989.

Farinelli, U.

U. Farinelli, R. Malvano, “Pulsing of photomultipliers,” Rev. Sci. Instrum. 29, 699–701 (1958).
[CrossRef]

Ferreira Marques, R.

H. M. Araújo, V. Y. Chepel, M. I. Lopes, J. van der Marel, R. Ferreira Marques, A J P L. Policarpo, “Low temperature performance of photomultiplier tubes illuminated in pulsed mode by visible and vacuum ultraviolet light,” IEEE Trans. Nucl. Sci. 45, 542–549 (1998).

Goldberg, J. M.

Hanselman, D. S.

Hearing, R.

R. Hearing, A. G. Wright, “Recent advances in photomultipliers for low level applications,” IEEE Trans. Nucl. Sci. NS-26, 368–372 (1979).
[CrossRef]

Herman, J. R.

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

Hieftje, G. M.

Hunt, W. H.

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

Kawada, Y.

M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods Phys. Res. 196, 199–202 (1982).
[CrossRef]

Krall, H. R.

H. R. Krall, “Extraneous light emission from photomultipliers,” IEEE Trans. Nucl. Sci. NS-14, 455–459 (1967).
[CrossRef]

Londo, T. R.

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

Lopes, M. I.

H. M. Araújo, V. Y. Chepel, M. I. Lopes, J. van der Marel, R. Ferreira Marques, A J P L. Policarpo, “Low temperature performance of photomultiplier tubes illuminated in pulsed mode by visible and vacuum ultraviolet light,” IEEE Trans. Nucl. Sci. 45, 542–549 (1998).

Malvano, R.

U. Farinelli, R. Malvano, “Pulsing of photomultipliers,” Rev. Sci. Instrum. 29, 699–701 (1958).
[CrossRef]

Manning, J. J.

R. B. Murray, J. J. Manning, “Response of end-window photomultiplier tubes as a function of temperature,” IEEE Trans. Nucl. Sci. NS-7, 80–86 (1960).

McDermid, I. S.

Minami, S.

Murray, R. B.

R. B. Murray, J. J. Manning, “Response of end-window photomultiplier tubes as a function of temperature,” IEEE Trans. Nucl. Sci. NS-7, 80–86 (1960).

Nishikawa, K.

Policarpo, A J P L.

H. M. Araújo, V. Y. Chepel, M. I. Lopes, J. van der Marel, R. Ferreira Marques, A J P L. Policarpo, “Low temperature performance of photomultiplier tubes illuminated in pulsed mode by visible and vacuum ultraviolet light,” IEEE Trans. Nucl. Sci. 45, 542–549 (1998).

Poultney, S. K.

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

Rahman, N. A.

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

Sené, M. R.

M. R. Sené, “A simple gating system for the Hamamatsu R1250 photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 278, 503–506 (1989).
[CrossRef]

Simpson, R. W.

R. W. Simpson, Y. Talmi, “Medium speed gating of ISIT tubes,” Rev. Sci. Instrum. 48, 1295–1297 (1977).
[CrossRef]

Talmi, Y.

R. W. Simpson, Y. Talmi, “Medium speed gating of ISIT tubes,” Rev. Sci. Instrum. 48, 1295–1297 (1977).
[CrossRef]

van der Marel, J.

H. M. Araújo, V. Y. Chepel, M. I. Lopes, J. van der Marel, R. Ferreira Marques, A J P L. Policarpo, “Low temperature performance of photomultiplier tubes illuminated in pulsed mode by visible and vacuum ultraviolet light,” IEEE Trans. Nucl. Sci. 45, 542–549 (1998).

Voronin, A. A.

A. A. Voronin, I. F. Yaroshenko, “Afterpulses in an electron multiplier,” J. Commun. Technol. Electron. 40, 49–51 (1995).

Walsh, T. D.

Wardle, R.

R. Wardle, “Gating photomultipliers,” Pub. R/P061 (Thorn EMI Electron Tubes Ltd., Ruislip, Middlesex, UK, 1982).

White, M. L.

Williamson, C. K.

Withnell, R.

Wright, A. G.

Yamashita, M.

M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods Phys. Res. 196, 199–202 (1982).
[CrossRef]

Yaroshenko, I. F.

A. A. Voronin, I. F. Yaroshenko, “Afterpulses in an electron multiplier,” J. Commun. Technol. Electron. 40, 49–51 (1995).

Yura, O.

M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods Phys. Res. 196, 199–202 (1982).
[CrossRef]

Zhao, Y.

Appl. Opt. (6)

Appl. Spectrosc. (2)

IEEE Trans. Nucl. Sci. (5)

H. R. Krall, “Extraneous light emission from photomultipliers,” IEEE Trans. Nucl. Sci. NS-14, 455–459 (1967).
[CrossRef]

R. Hearing, A. G. Wright, “Recent advances in photomultipliers for low level applications,” IEEE Trans. Nucl. Sci. NS-26, 368–372 (1979).
[CrossRef]

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

R. B. Murray, J. J. Manning, “Response of end-window photomultiplier tubes as a function of temperature,” IEEE Trans. Nucl. Sci. NS-7, 80–86 (1960).

H. M. Araújo, V. Y. Chepel, M. I. Lopes, J. van der Marel, R. Ferreira Marques, A J P L. Policarpo, “Low temperature performance of photomultiplier tubes illuminated in pulsed mode by visible and vacuum ultraviolet light,” IEEE Trans. Nucl. Sci. 45, 542–549 (1998).

J. Commun. Technol. Electron. (1)

A. A. Voronin, I. F. Yaroshenko, “Afterpulses in an electron multiplier,” J. Commun. Technol. Electron. 40, 49–51 (1995).

J. Phys. E (1)

B. L. Elphick, “A method of applying an avalanche transistor generated 70ns gating pulse to a focused photomultiplier,” J. Phys. E 2, 953–955 (1969).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. (1)

M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods Phys. Res. 196, 199–202 (1982).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

M. R. Sené, “A simple gating system for the Hamamatsu R1250 photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 278, 503–506 (1989).
[CrossRef]

Rev. Sci. Instrum. (5)

L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
[CrossRef]

B. H. Candy, “Photomultiplier characteristics and practice relevant to photon counting,” Rev. Sci. Instrum. 56, 183–193 (1985).
[CrossRef]

R. W. Simpson, Y. Talmi, “Medium speed gating of ISIT tubes,” Rev. Sci. Instrum. 48, 1295–1297 (1977).
[CrossRef]

J. R. Herman, T. R. Londo, N. A. Rahman, B. G. Barisas, “Normally-on photomultiplier gating circuit with reduced post-gate artifacts for use in transient luminescence measurements,” Rev. Sci. Instrum. 63, 5454–5458 (1992).
[CrossRef]

U. Farinelli, R. Malvano, “Pulsing of photomultipliers,” Rev. Sci. Instrum. 29, 699–701 (1958).
[CrossRef]

Other (4)

R. W. Engstrom, RCA Photomultiplier Handbook, Pub. PMT-62 (RCA Corp., Princeton, N.J., 1980); available from Burle Industries Inc., Lancaster, Pa., as Pub. TP-136, 1989.

Photomultiplier Tubes: Principles and Applications, D-PMT-AB/USA (Philips Photonics, Slaterville, R.I., 1994).

R. Wardle, “Gating photomultipliers,” Pub. R/P061 (Thorn EMI Electron Tubes Ltd., Ruislip, Middlesex, UK, 1982).

“Gated operation of OMA-2 detectors,” Electro-Optical Instrument Application Note, TN 181 (EG&G Princeton Applied Research, Princeton, N. J., 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Normally off dynode gate divider network with dynode-6 biased to dynode-3 for control of nine-stage SW PMTs such as the Hamamatsu R372.

Fig. 2
Fig. 2

Normally off PC gate divider network with PC biased to dynode-2 for control of nine-stage SW PMTs such as the R372.

Fig. 3
Fig. 3

PC gate on-to-off signal ratios for the R372 PMT as a function of wavelength obtained with a series of discrete LEDs. The relative radiant spectral sensitivity for the Cs3Sb dynodes is also shown. The PC mask aperture is 25 mm × 10 mm.

Fig. 4
Fig. 4

Oscillogram of an average of 1000 SIB signals measured with the dynode-6 gate circuit where dynode-6 is biased to dynode-3 (see Fig. 1). The 500-ns blue LED excitation pulse, which is extinguished after ∼1 µs, is initiated so that its trailing edge is located 2.5 µs before the gate opens. This pulse produces a leak-through amplitude of 1 mA (peak is off scale) as estimated from the 3396:1 gate on-to-off signal ratio. In the absence of gate protection, the equivalent gate-on anode signal would be 3.4 A, which would cause severe saturation or even dynode damage. Time base, 2 µs/division, vertical scale, 40 µA/division. See text for other operating, circuit, and gating details.

Fig. 5
Fig. 5

Logarithmic plot of the decay of the long-term SIB data from Fig. 4 over a 70-µs period beginning at the gate opening point.

Fig. 6
Fig. 6

Bar chart of the relative SIB signal for the Hamamatsu R372 PMT for (i) ungated operation, (ii) the PC gate, and (iii) a series of single-dynode gates, where the SIB measurement was made at a point 5 µs after the trailing edge of the 500-ns LED pulse and 2 µs after the gate opens. Overall PMT operating voltage, 800 V; gate and LED pulse repetition rate, 50 Hz; LED, GaN peaked at 470 nm; PC mask aperture, 25 mm × 10 mm.

Fig. 7
Fig. 7

Bar chart of the gate on-to-off signal ratio for the Hamamatsu R372 PMT for the PC gate and a series of dynode gates. Operating conditions are the same as for Fig. 6.

Fig. 8
Fig. 8

Bar chart of the relative SIB signal for the EI 9202 PMT for (i) ungated operation, (ii) the PC gate, and (iii) a series of single-dynode gates, where the SIB measurement was made at a point 2.5 µs after the trailing edge of the 500-ns LED pulse and 1 µs after the gate opens. Overall PMT operating voltage, 1200 V; gate and LED pulse repetition rate, 50 Hz; LED, GaN peaked at 470 nm.

Fig. 9
Fig. 9

Bar chart of the gate on-to-off signal ratio for the EI 9202 PMT for the PC gate and a series of dynode gates. Operating conditions are the same as for Fig. 8.

Fig. 10
Fig. 10

Bar chart of the relative SIB signal for the RCA C31000A PMT for (i) ungated operation, (ii) the PC gate, and (iii) a series of single-dynode gates, where the SIB measurement was made at a point 5 µs after the trailing edge of the 500-ns LED pulse and 2 µs after the gate opens. Overall PMT operating voltage, 1500 V; gate and LED pulse repetition rate, 50 Hz; LED, GaN peaked at 470 nm. FG, focus grid.

Fig. 11
Fig. 11

Logarithmic bar chart of the gate on-to-off signal ratio for the RCA C31000A PMT for the PC and focus grid (FG) gates and a series of dynode gates. Operating conditions are the same as for Fig. 10.

Fig. 12
Fig. 12

PC gate on-to-off signal ratios for the R372, 9202, and C31000A PMTs as a function of wavelength obtained with a series of discrete LEDs. Operating conditions are as for the three PMTs as per Figs. 6, 8, and 10, respectively. The R372 and 9202 PMTs have Cs3Sb dynodes, and the C31000A PMT has BeCu dynodes.

Metrics