Abstract

High-accuracy remote measurement of greenhouse gases is hampered by contamination of the field of view by the path radiance of solar radiation scattered from clouds and aerosols. A method is proposed for eliminating the effect of path radiance by differentiating two components of polarized light. The polarization of path radiance is measured directly at the wave-number region of strong water-vapor absorption. Using this measurement, we eliminate the components of path radiance involved in other bands, which are used for greenhouse gas measurements, by differentiating two components of the polarized light. It is shown that the effect of path radiance on retrieving the column amount of gases potentially can be reduced to below 0.1%.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shimoda, T. Ogawa, “Development of a FTIR sounder-IMG,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 37–59.
    [CrossRef]
  2. Ta. Aoki, M. Fukabori, Te. Aoki, “Trace gas remote sounding from near IR sun glint observation with tunable etalons,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 309–322.
    [CrossRef]
  3. J. H. Park, “Atmospheric CO2 monitoring from space,” Appl. Opt. 36, 2701–2712 (1997).
    [CrossRef] [PubMed]
  4. D. M. O’Brien, P. J. Rayner, “Global observation of the carbon budget. II. CO2 concentrations from differential absorption of reflected sunlight in the 1.61 µm band of CO2,” J. Geophys. Res.107 (to be published).
  5. B. T. Tolton, D. Plouffe, “Sensitivity of radiometric measurements of the atmospheric CO2 column from space,” Appl. Opt. 40, 1305–1313 (2001).
    [CrossRef]
  6. P. J. Rayner, D. M. O’Brien, “The utility of remote sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
    [CrossRef]
  7. Ta. Aoki, M. Fukabori, Te. Aoki, “Studies of remote sensor for tropospheric trace gas soundings from satellite,” in Sensors, Systems, and Next-Generation Satellite II, H. Fujisada, ed., Proc. SPIE3498, 400–408 (1998).
    [CrossRef]
  8. Ta. Aoki, M. Fukabori, Te. Aoki, “Optical remote sensing of greenhouse gases in the troposphere,” in Optical Remote Sensing of the Atmosphere and Clouds II, Y. Sasano, J. Wang, T. Hayasaka, eds., Proc. SPIE4150, 138–147 (2000).
    [CrossRef]
  9. H. Kobayashi, Interferometric Monitor for Greenhouse Gases, IMG Project Tech. Rep. (Central Research Institute of Electric Power Industry, Tokyo, 1999).
  10. H. H. Aumann, M. T. Chahine, “AIRS/AMSU/HSB on EOS-AM-1 instrument performance and product generation,” Earth Observer 11(2), 3–6 (1999).
  11. E. O. Schmidt, R. F. Arduini, B. A. Wielicki, R. S. Stone, S.-C. Tsay, “Considerations for modeling thin cirrus effects via brightness temperature differences,” J. Appl. Meteorol. 34, 447–459 (1995).
    [CrossRef]
  12. B.-C. Gao, Y. J. Kaufman, W. Han, W. J. Wiscombe, “Correction of thin cirrus path radiance in the 0.4–1.0-µm spectral region using the sensitive 1.375-µm cirrus detecting channel,” J. Geophys. Res. 103, 32,169–32,176 (1998).
    [CrossRef]
  13. G. N. Plass, G. W. Kattawar, J. A. Guinn, “Isophotes of Sun glint glitter on a wind-ruffled sea,” Appl. Opt. 16, 643–653 (1977).
    [CrossRef] [PubMed]
  14. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [CrossRef]
  15. J. A. Guinn, G. N. Plass, G. W. Kattawar, “Sun glint glitter on a wind-ruffled sea: further studies,” Appl. Opt. 18, 842–849 (1979).
    [CrossRef] [PubMed]
  16. C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Marine Res. 13, 198–225 (1954).
  17. C. Cox, W. Munk, “Some problems in optical oceanography,” J. Marine Res. 14, 63–78 (1955).
  18. D. L. Coffeen, “Polarization and scattering characteristics in the atmosphere of Earth, Venus, and Jupiter,” J. Opt. Soc. Am. 69, 1051–1064 (1979).
    [CrossRef]
  19. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
    [CrossRef]
  20. K. N. Liou, Radiation and Cloud Processes in the Atmosphere (Oxford U. Press, New York, 1992).
  21. W. G. Egan, W. R. Johnson, V. S. Whitehead, “Terrestrial polarization imagery obtained from the Space Shuttle: characterization and interpretation,” Appl. Opt. 30, 435–442 (1991).
    [CrossRef] [PubMed]
  22. W. G. Egan, S. Israel, M. Sidran, E. E. Hindman, W. R. Johnson, V. S. Whitehead, “Optical properties of continental haze and cumulus and orographic clouds based on Space Shuttle polarimetric observations,” Appl. Opt. 32, 6841–6852 (1993).
    [CrossRef] [PubMed]
  23. K. N. Liou, An Introduction to Atmospheric Radiation (Academic, Orlando, Fla., 1980).
  24. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987).
  25. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  26. W. L. Wolfe, G. J. Zissis, eds., The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989).
  27. F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).
  28. T. Aoki, “Development of a line-by-line model for the infrared radiative transfer in the earth’s atmosphere,” Papers Meteorol. Geophys. 39, 53–58 (1988).
    [CrossRef]
  29. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  30. M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Bound. Layer Meteorol. 18, 247–267 (1980).
    [CrossRef]
  31. T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
    [CrossRef]
  32. W. Livingston, L. Wallace, “Atlas of solar spectrum in the infrared from 1850 to 9000 cm−1 (1.1 to 5.4 µm),” Tech. Rep. 91-001 (National Solar Observatories, Tucson, Arizona, 1991).
  33. Ta. Aoki, M. Fukabori, Te. Aoki, “Asymmetric line shapes of the instrumental function found in two-etalon systems with a finite field of view,” Appl. Opt. 35, 5170–5176 (1997).
    [CrossRef]

2001

B. T. Tolton, D. Plouffe, “Sensitivity of radiometric measurements of the atmospheric CO2 column from space,” Appl. Opt. 40, 1305–1313 (2001).
[CrossRef]

P. J. Rayner, D. M. O’Brien, “The utility of remote sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

1999

H. H. Aumann, M. T. Chahine, “AIRS/AMSU/HSB on EOS-AM-1 instrument performance and product generation,” Earth Observer 11(2), 3–6 (1999).

1998

B.-C. Gao, Y. J. Kaufman, W. Han, W. J. Wiscombe, “Correction of thin cirrus path radiance in the 0.4–1.0-µm spectral region using the sensitive 1.375-µm cirrus detecting channel,” J. Geophys. Res. 103, 32,169–32,176 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

1997

1995

E. O. Schmidt, R. F. Arduini, B. A. Wielicki, R. S. Stone, S.-C. Tsay, “Considerations for modeling thin cirrus effects via brightness temperature differences,” J. Appl. Meteorol. 34, 447–459 (1995).
[CrossRef]

1993

1991

1989

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

1988

T. Aoki, “Development of a line-by-line model for the infrared radiative transfer in the earth’s atmosphere,” Papers Meteorol. Geophys. 39, 53–58 (1988).
[CrossRef]

1983

T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
[CrossRef]

1980

M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Bound. Layer Meteorol. 18, 247–267 (1980).
[CrossRef]

1979

1977

1973

1955

C. Cox, W. Munk, “Some problems in optical oceanography,” J. Marine Res. 14, 63–78 (1955).

1954

C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
[CrossRef]

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Marine Res. 13, 198–225 (1954).

Abreu, L. W.

F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).

Aoki, T.

T. Aoki, “Development of a line-by-line model for the infrared radiative transfer in the earth’s atmosphere,” Papers Meteorol. Geophys. 39, 53–58 (1988).
[CrossRef]

Aoki, Ta.

Ta. Aoki, M. Fukabori, Te. Aoki, “Asymmetric line shapes of the instrumental function found in two-etalon systems with a finite field of view,” Appl. Opt. 35, 5170–5176 (1997).
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Trace gas remote sounding from near IR sun glint observation with tunable etalons,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 309–322.
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Studies of remote sensor for tropospheric trace gas soundings from satellite,” in Sensors, Systems, and Next-Generation Satellite II, H. Fujisada, ed., Proc. SPIE3498, 400–408 (1998).
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Optical remote sensing of greenhouse gases in the troposphere,” in Optical Remote Sensing of the Atmosphere and Clouds II, Y. Sasano, J. Wang, T. Hayasaka, eds., Proc. SPIE4150, 138–147 (2000).
[CrossRef]

Aoki, Te.

Ta. Aoki, M. Fukabori, Te. Aoki, “Asymmetric line shapes of the instrumental function found in two-etalon systems with a finite field of view,” Appl. Opt. 35, 5170–5176 (1997).
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Studies of remote sensor for tropospheric trace gas soundings from satellite,” in Sensors, Systems, and Next-Generation Satellite II, H. Fujisada, ed., Proc. SPIE3498, 400–408 (1998).
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Trace gas remote sounding from near IR sun glint observation with tunable etalons,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 309–322.
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Optical remote sensing of greenhouse gases in the troposphere,” in Optical Remote Sensing of the Atmosphere and Clouds II, Y. Sasano, J. Wang, T. Hayasaka, eds., Proc. SPIE4150, 138–147 (2000).
[CrossRef]

Arduini, R. F.

E. O. Schmidt, R. F. Arduini, B. A. Wielicki, R. S. Stone, S.-C. Tsay, “Considerations for modeling thin cirrus effects via brightness temperature differences,” J. Appl. Meteorol. 34, 447–459 (1995).
[CrossRef]

Aumann, H. H.

H. H. Aumann, M. T. Chahine, “AIRS/AMSU/HSB on EOS-AM-1 instrument performance and product generation,” Earth Observer 11(2), 3–6 (1999).

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chahine, M. T.

H. H. Aumann, M. T. Chahine, “AIRS/AMSU/HSB on EOS-AM-1 instrument performance and product generation,” Earth Observer 11(2), 3–6 (1999).

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chetwynd, J. H.

F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).

Clough, S. A.

F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).

Coffeen, D. L.

Cox, C.

C. Cox, W. Munk, “Some problems in optical oceanography,” J. Marine Res. 14, 63–78 (1955).

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Marine Res. 13, 198–225 (1954).

C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Deschamps, P. Y.

M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Bound. Layer Meteorol. 18, 247–267 (1980).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Egan, W. G.

Fenn, R. W.

F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Fukabori, M.

Ta. Aoki, M. Fukabori, Te. Aoki, “Asymmetric line shapes of the instrumental function found in two-etalon systems with a finite field of view,” Appl. Opt. 35, 5170–5176 (1997).
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Trace gas remote sounding from near IR sun glint observation with tunable etalons,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 309–322.
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Optical remote sensing of greenhouse gases in the troposphere,” in Optical Remote Sensing of the Atmosphere and Clouds II, Y. Sasano, J. Wang, T. Hayasaka, eds., Proc. SPIE4150, 138–147 (2000).
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Studies of remote sensor for tropospheric trace gas soundings from satellite,” in Sensors, Systems, and Next-Generation Satellite II, H. Fujisada, ed., Proc. SPIE3498, 400–408 (1998).
[CrossRef]

Gallery, W. O.

F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gao, B.-C.

B.-C. Gao, Y. J. Kaufman, W. Han, W. J. Wiscombe, “Correction of thin cirrus path radiance in the 0.4–1.0-µm spectral region using the sensitive 1.375-µm cirrus detecting channel,” J. Geophys. Res. 103, 32,169–32,176 (1998).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Guinn, J. A.

Hale, G. M.

Han, W.

B.-C. Gao, Y. J. Kaufman, W. Han, W. J. Wiscombe, “Correction of thin cirrus path radiance in the 0.4–1.0-µm spectral region using the sensitive 1.375-µm cirrus detecting channel,” J. Geophys. Res. 103, 32,169–32,176 (1998).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987).

Hindman, E. E.

Israel, S.

Johnson, W. R.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kattawar, G. W.

Kaufman, Y. J.

B.-C. Gao, Y. J. Kaufman, W. Han, W. J. Wiscombe, “Correction of thin cirrus path radiance in the 0.4–1.0-µm spectral region using the sensitive 1.375-µm cirrus detecting channel,” J. Geophys. Res. 103, 32,169–32,176 (1998).
[CrossRef]

Kneizys, F. X.

F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).

Kobayashi, H.

H. Kobayashi, Interferometric Monitor for Greenhouse Gases, IMG Project Tech. Rep. (Central Research Institute of Electric Power Industry, Tokyo, 1999).

Liou, K. N.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

K. N. Liou, Radiation and Cloud Processes in the Atmosphere (Oxford U. Press, New York, 1992).

K. N. Liou, An Introduction to Atmospheric Radiation (Academic, Orlando, Fla., 1980).

Livingston, W.

W. Livingston, L. Wallace, “Atlas of solar spectrum in the infrared from 1850 to 9000 cm−1 (1.1 to 5.4 µm),” Tech. Rep. 91-001 (National Solar Observatories, Tucson, Arizona, 1991).

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Munk, W.

C. Cox, W. Munk, “Some problems in optical oceanography,” J. Marine Res. 14, 63–78 (1955).

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Marine Res. 13, 198–225 (1954).

C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
[CrossRef]

Nakajima, T.

T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

O’Brien, D. M.

P. J. Rayner, D. M. O’Brien, “The utility of remote sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

D. M. O’Brien, P. J. Rayner, “Global observation of the carbon budget. II. CO2 concentrations from differential absorption of reflected sunlight in the 1.61 µm band of CO2,” J. Geophys. Res.107 (to be published).

Ogawa, T.

H. Shimoda, T. Ogawa, “Development of a FTIR sounder-IMG,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 37–59.
[CrossRef]

Park, J. H.

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Plass, G. N.

Plouffe, D.

Querry, M. R.

Rayner, P. J.

P. J. Rayner, D. M. O’Brien, “The utility of remote sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

D. M. O’Brien, P. J. Rayner, “Global observation of the carbon budget. II. CO2 concentrations from differential absorption of reflected sunlight in the 1.61 µm band of CO2,” J. Geophys. Res.107 (to be published).

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Schmidt, E. O.

E. O. Schmidt, R. F. Arduini, B. A. Wielicki, R. S. Stone, S.-C. Tsay, “Considerations for modeling thin cirrus effects via brightness temperature differences,” J. Appl. Meteorol. 34, 447–459 (1995).
[CrossRef]

Scroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Selby, J. E. A.

F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).

Shettle, F. P.

F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).

Shimoda, H.

H. Shimoda, T. Ogawa, “Development of a FTIR sounder-IMG,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 37–59.
[CrossRef]

Sidran, M.

Stone, R. S.

E. O. Schmidt, R. F. Arduini, B. A. Wielicki, R. S. Stone, S.-C. Tsay, “Considerations for modeling thin cirrus effects via brightness temperature differences,” J. Appl. Meteorol. 34, 447–459 (1995).
[CrossRef]

Takano, Y.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

Tanaka, M.

T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
[CrossRef]

Tanré, D.

M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Bound. Layer Meteorol. 18, 247–267 (1980).
[CrossRef]

Tolton, B. T.

Tsay, S.-C.

E. O. Schmidt, R. F. Arduini, B. A. Wielicki, R. S. Stone, S.-C. Tsay, “Considerations for modeling thin cirrus effects via brightness temperature differences,” J. Appl. Meteorol. 34, 447–459 (1995).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Viollier, M.

M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Bound. Layer Meteorol. 18, 247–267 (1980).
[CrossRef]

Wallace, L.

W. Livingston, L. Wallace, “Atlas of solar spectrum in the infrared from 1850 to 9000 cm−1 (1.1 to 5.4 µm),” Tech. Rep. 91-001 (National Solar Observatories, Tucson, Arizona, 1991).

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Whitehead, V. S.

Wielicki, B. A.

E. O. Schmidt, R. F. Arduini, B. A. Wielicki, R. S. Stone, S.-C. Tsay, “Considerations for modeling thin cirrus effects via brightness temperature differences,” J. Appl. Meteorol. 34, 447–459 (1995).
[CrossRef]

Wiscombe, W. J.

B.-C. Gao, Y. J. Kaufman, W. Han, W. J. Wiscombe, “Correction of thin cirrus path radiance in the 0.4–1.0-µm spectral region using the sensitive 1.375-µm cirrus detecting channel,” J. Geophys. Res. 103, 32,169–32,176 (1998).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Appl. Opt.

Bound. Layer Meteorol.

M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Bound. Layer Meteorol. 18, 247–267 (1980).
[CrossRef]

Earth Observer

H. H. Aumann, M. T. Chahine, “AIRS/AMSU/HSB on EOS-AM-1 instrument performance and product generation,” Earth Observer 11(2), 3–6 (1999).

Geophys. Res. Lett.

P. J. Rayner, D. M. O’Brien, “The utility of remote sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

J. Appl. Meteorol.

E. O. Schmidt, R. F. Arduini, B. A. Wielicki, R. S. Stone, S.-C. Tsay, “Considerations for modeling thin cirrus effects via brightness temperature differences,” J. Appl. Meteorol. 34, 447–459 (1995).
[CrossRef]

J. Atmos. Sci.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

J. Geophys. Res.

B.-C. Gao, Y. J. Kaufman, W. Han, W. J. Wiscombe, “Correction of thin cirrus path radiance in the 0.4–1.0-µm spectral region using the sensitive 1.375-µm cirrus detecting channel,” J. Geophys. Res. 103, 32,169–32,176 (1998).
[CrossRef]

J. Marine Res.

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Marine Res. 13, 198–225 (1954).

C. Cox, W. Munk, “Some problems in optical oceanography,” J. Marine Res. 14, 63–78 (1955).

J. Opt. Soc. Am.

J. Quant. Spectrosc. Radiat. Transfer

T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Papers Meteorol. Geophys.

T. Aoki, “Development of a line-by-line model for the infrared radiative transfer in the earth’s atmosphere,” Papers Meteorol. Geophys. 39, 53–58 (1988).
[CrossRef]

Other

W. Livingston, L. Wallace, “Atlas of solar spectrum in the infrared from 1850 to 9000 cm−1 (1.1 to 5.4 µm),” Tech. Rep. 91-001 (National Solar Observatories, Tucson, Arizona, 1991).

K. N. Liou, Radiation and Cloud Processes in the Atmosphere (Oxford U. Press, New York, 1992).

W. L. Wolfe, G. J. Zissis, eds., The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989).

F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).

K. N. Liou, An Introduction to Atmospheric Radiation (Academic, Orlando, Fla., 1980).

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987).

Ta. Aoki, M. Fukabori, Te. Aoki, “Studies of remote sensor for tropospheric trace gas soundings from satellite,” in Sensors, Systems, and Next-Generation Satellite II, H. Fujisada, ed., Proc. SPIE3498, 400–408 (1998).
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Optical remote sensing of greenhouse gases in the troposphere,” in Optical Remote Sensing of the Atmosphere and Clouds II, Y. Sasano, J. Wang, T. Hayasaka, eds., Proc. SPIE4150, 138–147 (2000).
[CrossRef]

H. Kobayashi, Interferometric Monitor for Greenhouse Gases, IMG Project Tech. Rep. (Central Research Institute of Electric Power Industry, Tokyo, 1999).

D. M. O’Brien, P. J. Rayner, “Global observation of the carbon budget. II. CO2 concentrations from differential absorption of reflected sunlight in the 1.61 µm band of CO2,” J. Geophys. Res.107 (to be published).

H. Shimoda, T. Ogawa, “Development of a FTIR sounder-IMG,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 37–59.
[CrossRef]

Ta. Aoki, M. Fukabori, Te. Aoki, “Trace gas remote sounding from near IR sun glint observation with tunable etalons,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 309–322.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Conceptual design of the sensor for tropospheric greenhouse gases: DM’s, dichroic mirrors; M’s, mirrors; CCD; CCD sensor for detecting cloud; P, polarizer; CHOP, chopper; TE, tunable etalon; F’s, bandpass filters composed of a fixed etalon and an interference filter; D’s, detectors.

Fig. 2
Fig. 2

Transmittance spectra in the wave-number region used for CO2 sounding with the TERSE instrument. Top trace, transmittance of an interference filter by which the relative intensity of the extraterrestrial solar radiation is multiplied. ETALON, TE, and AEROSOLS+CLOUD, transmission functions of the fixed etalon, the tunable etalon, and the aerosol and cloud layers, respectively. MOLECULES, transmission function of the molecules for the vertical path; ATMOSPHERE, transmission function of the slant path of the atmosphere including aerosols and cloud. Bottom trace, transmittance of the atmosphere for the slant path multiplied by that of the bandpass filter.

Fig. 3
Fig. 3

Normalized Sun glitter radiance A s observed from a helicopter at 1500-m height for several elevation look angles at local time of approximately 9:08 A.M. on 13 January 1998.

Fig. 4
Fig. 4

Perpendicular (solid curve) and parallel (dotted curve) components of reflected radiation at the water surface with an index of refraction of 1.32. Linear polarization, thick dashed curve; polarization range of 60%, thin horizontal line.

Fig. 5
Fig. 5

Accumulated optical thickness of cloud and aerosols from the top of the atmosphere to the heights shown.

Fig. 6
Fig. 6

Spectra of path radiance (solid curve) and of surface-reflected radiance (thick dashed curve) for the strong water-vapor absorption band at 7344 cm-1. The transmission spectrum of the interference filter used in this study is shown by the dotted curve.

Fig. 7
Fig. 7

Spectra of the path radiance (lower curve) and the surface-reflected radiance (upper curve) of the CO2 band at 6207 cm-1 calculated for the same atmospheric model as in Fig. 6.

Fig. 8
Fig. 8

Simulations for R s (v m ) (top solid curve), R path(v m ) (bottom solid curve), ΔR s (v m ) (top dashed curve), and ΔR path(v m ) (bottom dashed curve) versus m for the CO2 band at 6207 cm-1 with P c = 0.2 and P a = 0.4.

Fig. 9
Fig. 9

Same as Fig. 8 but for the O2 band at 7837 cm-1.

Fig. 10
Fig. 10

Distribution of the value of ∊ D for the band of CO2 at 6207 cm-1 with the conditions h = 700 km, θSun = 50°, W = 2 m/s, φW = 90°, P c = 0.2, P a = 0.1, and n = 1.32.

Tables (1)

Tables Icon

Table 1 Parameters of Gaseous Bands Used in the TERSE

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

Rvm=C ν1ν2dν1Ω0Ω0 Φvm, νIsν+IpathνdΩ,
Ipathν=IAMν+ICν,
Rvm=Rsvm+RAMvm+RCvm,
RXvm=C ν1ν2dν1Ω0Ω0 Φvm, νIXνdΩ,
r=sin2ω-ω2 sin2ω+ω,
r=tan2ω-ω2 tan2ω+ω.
sin ω=n sin ω,
RH=RsH+RAMH+RCH,
αH=RHRH,
yvm=Rvm-αHRvm.
yvm=ΔRsvm+ΔRAMvm+ΔRCvm,
ΔRXvmRX,vm-αHRX,vm=αxvm-αH1+αXvm RXvm,
αXvm=RX,vmRX,vm.
PX=RX,-RX,RX,+RX,=αX-1αX+1.
αxvm=α¯x=1+P¯X1-P¯X,
ΔRXvm=α¯x-αH1+α¯x RXvm=P¯x-PH1-PH RXvm,
=RpathmaxRmax1-pzp0,
D=ΔRpathmaxymax1-pzp0,
ψzc, zu=Gζ, η, W2πσcσuexp-ζ2+η2/2,
ζ=zc/σc=tan θn sin φn/σc, η=zu/σu=tan θn sin φn/σu,
I=1/4I*rω, nψzc, zus4 θn s θdφdμ.
Rvm=C ν1ν2dν1Ω0Ω0dΩΦvm, ν×Isν+Ipathν,
Isν=rsνISunντeM+A+Cν, 0,
Ipathν=ISunνi=1N0-1 τeM+A+Cν, zi×μobsχ=M,A,C Piχks,iχρiχΔzi,
μobs=1/cos θ,
ISunν=I*ΦSunν,
Rvm=CI* ν1ν2dνΦ¯vm, νΦSunν×r¯sτeν, 0+Sν,
Φ¯vm, ν1Ω0Ω0 Φvm, νdΩ,
τeν, z=τaM+A+CντsM+A+Cν,
Sν=i=1N0-1 τezi+1/2×μobsχ=M,A,C Piχks,iχρiχΔzi,
τeM+A+Cν, z=τczτaMν, z,
τcτaA+CτsM+A+C.
τzi+1/2=½τzi+τzi+1
Sν=12i=1N0-1τezi+τezi+1ui=12i=1N0 τeziui-1+ui,
uiμobsχ=M,A,C Piχks,iχρiχΔzi.
τaMν, zi=exp-μ n=iN0-1 Δzng kg,nνρg,n,
μ=μSun+μobs,
τczi=exp-μ n=iN0-1 Δznχ ke,nχρnχ,

Metrics