Abstract

A novel method, to our knowledge, to measure simultaneously the thermal emissivity and skin temperature of a sea surface has been developed. The proposed method uses an infrared image that includes a sea surface and a reference object located near the surface. By combining this image with sky radiation temperature, we retrieve both skin sea surface temperature and sea surface emissivity from the single infrared image. Because the method requires no knowledge of thermal radiative properties of actual sea surfaces, it can be used even for a contaminated sea surface whose emissivity is hard to determine theoretically, e.g., oil slicks or slicks produced by biological wastes. Experimental results demonstrate that the estimated emissivity agrees with the theoretical prediction and, also, the recovered temperature distribution of skin sea surface has no appreciable high-temperature area that is due to reflection of the reference object. The method allows the acquisition of match-up data of radiometric sea surface temperatures that precisely correspond to the satellite observable data.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Kearns, J. A. Hanafin, R. H. Evans, P. J. Minnet, O. B. Brown, “An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine Atmosphere Emitted Radiance Interferometer (MAERI),” Bull. Am. Meteorol. Soc. 81, 1525–1536 (2000).
    [Crossref]
  2. W. J. Emery, H. Grassi, T. Mammen, “On the bulk-skin temperature difference and its impact on satellite remote-sensing of sea surface temperature,” J. Geophys. Res. 95, 13341–13356 (1990).
    [Crossref]
  3. R. Yokoyama, S. Tamba, T. Souma, “Sea surface effects on the sea surface temperature estimation by remote sensing,” Int. J. Remote Sens. 16, 227–238 (1995).
    [Crossref]
  4. R. Yokoyama, S. Tamba, T. Souma, D. Llewellyn-Jones, I. M. Parks, “MUBEX: Japan and U.K. collaboration for Mutsu Bay sea surface validation experiment,” in Proceedings of the International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 311–313.
  5. K. Yoshimori, K. Itoh, Y. Ichioka, “Statistical formulation for an inhomogeneous random water surface: a basis for optical remote sensing of oceans,” J. Opt. Soc. Am. A 11, 723–730 (1994).
    [Crossref]
  6. K. Yoshimori, K. Itoh, Y. Ichioka, “Thermal radiative and reflective characteristics of wind-roughened water surface,” J. Opt. Soc. Am. A 11, 1886–1893 (1994).
    [Crossref]
  7. R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969), p. 144.
  8. K. Yoshimori, K. Itoh, Y. Ichioka, “Statistically-corrected ocean thermography,” Appl. Opt. 33, 7078–7087 (1994).
    [Crossref] [PubMed]
  9. K. Yoshimori, K. Itoh, Y. Ichioka, “Optical characteristics of a wind-roughened water surface: a two-dimensional theory,” Appl. Opt. 34, 6236–6247 (1995).
    [Crossref] [PubMed]
  10. I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
    [Crossref]
  11. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [Crossref] [PubMed]
  12. K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
    [Crossref]
  13. P. D. Watts, M. R. Allen, T. J. Nightingale, “Wind-speed effects on sea surface emission and reflection for the Along-Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
    [Crossref]
  14. X. Wu, W. L. Smith, “Emissivity of rough sea surface for 8–13 µm: modeling and verification,” Appl. Opt. 36, 2609–2619 (1997).
    [Crossref] [PubMed]

2000 (2)

E. J. Kearns, J. A. Hanafin, R. H. Evans, P. J. Minnet, O. B. Brown, “An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine Atmosphere Emitted Radiance Interferometer (MAERI),” Bull. Am. Meteorol. Soc. 81, 1525–1536 (2000).
[Crossref]

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

1997 (1)

1996 (1)

P. D. Watts, M. R. Allen, T. J. Nightingale, “Wind-speed effects on sea surface emission and reflection for the Along-Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
[Crossref]

1995 (2)

K. Yoshimori, K. Itoh, Y. Ichioka, “Optical characteristics of a wind-roughened water surface: a two-dimensional theory,” Appl. Opt. 34, 6236–6247 (1995).
[Crossref] [PubMed]

R. Yokoyama, S. Tamba, T. Souma, “Sea surface effects on the sea surface temperature estimation by remote sensing,” Int. J. Remote Sens. 16, 227–238 (1995).
[Crossref]

1994 (3)

1990 (1)

W. J. Emery, H. Grassi, T. Mammen, “On the bulk-skin temperature difference and its impact on satellite remote-sensing of sea surface temperature,” J. Geophys. Res. 95, 13341–13356 (1990).
[Crossref]

1988 (1)

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[Crossref]

1973 (1)

Allen, M. R.

P. D. Watts, M. R. Allen, T. J. Nightingale, “Wind-speed effects on sea surface emission and reflection for the Along-Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
[Crossref]

Brown, O. B.

E. J. Kearns, J. A. Hanafin, R. H. Evans, P. J. Minnet, O. B. Brown, “An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine Atmosphere Emitted Radiance Interferometer (MAERI),” Bull. Am. Meteorol. Soc. 81, 1525–1536 (2000).
[Crossref]

Donlon, C. J.

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

Emery, W. J.

W. J. Emery, H. Grassi, T. Mammen, “On the bulk-skin temperature difference and its impact on satellite remote-sensing of sea surface temperature,” J. Geophys. Res. 95, 13341–13356 (1990).
[Crossref]

Evans, R. H.

E. J. Kearns, J. A. Hanafin, R. H. Evans, P. J. Minnet, O. B. Brown, “An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine Atmosphere Emitted Radiance Interferometer (MAERI),” Bull. Am. Meteorol. Soc. 81, 1525–1536 (2000).
[Crossref]

Grassi, H.

W. J. Emery, H. Grassi, T. Mammen, “On the bulk-skin temperature difference and its impact on satellite remote-sensing of sea surface temperature,” J. Geophys. Res. 95, 13341–13356 (1990).
[Crossref]

Hale, G. M.

Hanafin, J. A.

E. J. Kearns, J. A. Hanafin, R. H. Evans, P. J. Minnet, O. B. Brown, “An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine Atmosphere Emitted Radiance Interferometer (MAERI),” Bull. Am. Meteorol. Soc. 81, 1525–1536 (2000).
[Crossref]

Hudson, R. D.

R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969), p. 144.

Ichioka, Y.

Itoh, K.

Kearns, E. J.

E. J. Kearns, J. A. Hanafin, R. H. Evans, P. J. Minnet, O. B. Brown, “An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine Atmosphere Emitted Radiance Interferometer (MAERI),” Bull. Am. Meteorol. Soc. 81, 1525–1536 (2000).
[Crossref]

Llewellyn-Jones, D.

R. Yokoyama, S. Tamba, T. Souma, D. Llewellyn-Jones, I. M. Parks, “MUBEX: Japan and U.K. collaboration for Mutsu Bay sea surface validation experiment,” in Proceedings of the International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 311–313.

Llewellyn-Jones, D. T.

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

Mammen, T.

W. J. Emery, H. Grassi, T. Mammen, “On the bulk-skin temperature difference and its impact on satellite remote-sensing of sea surface temperature,” J. Geophys. Res. 95, 13341–13356 (1990).
[Crossref]

Masuda, K.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[Crossref]

Minnet, P. J.

E. J. Kearns, J. A. Hanafin, R. H. Evans, P. J. Minnet, O. B. Brown, “An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine Atmosphere Emitted Radiance Interferometer (MAERI),” Bull. Am. Meteorol. Soc. 81, 1525–1536 (2000).
[Crossref]

Mutlow, C. T.

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

Nightingale, T. J.

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

P. D. Watts, M. R. Allen, T. J. Nightingale, “Wind-speed effects on sea surface emission and reflection for the Along-Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
[Crossref]

Parkes, I. M.

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

Parks, I. M.

R. Yokoyama, S. Tamba, T. Souma, D. Llewellyn-Jones, I. M. Parks, “MUBEX: Japan and U.K. collaboration for Mutsu Bay sea surface validation experiment,” in Proceedings of the International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 311–313.

Querry, M. R.

Sheasby, T. N.

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

Smith, W. L.

Souma, T.

R. Yokoyama, S. Tamba, T. Souma, “Sea surface effects on the sea surface temperature estimation by remote sensing,” Int. J. Remote Sens. 16, 227–238 (1995).
[Crossref]

R. Yokoyama, S. Tamba, T. Souma, D. Llewellyn-Jones, I. M. Parks, “MUBEX: Japan and U.K. collaboration for Mutsu Bay sea surface validation experiment,” in Proceedings of the International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 311–313.

Takashima, T.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[Crossref]

Takayama, Y.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[Crossref]

Tamba, S.

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

R. Yokoyama, S. Tamba, T. Souma, “Sea surface effects on the sea surface temperature estimation by remote sensing,” Int. J. Remote Sens. 16, 227–238 (1995).
[Crossref]

R. Yokoyama, S. Tamba, T. Souma, D. Llewellyn-Jones, I. M. Parks, “MUBEX: Japan and U.K. collaboration for Mutsu Bay sea surface validation experiment,” in Proceedings of the International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 311–313.

Watts, P. D.

P. D. Watts, M. R. Allen, T. J. Nightingale, “Wind-speed effects on sea surface emission and reflection for the Along-Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
[Crossref]

Wu, X.

Yokoyama, R.

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

R. Yokoyama, S. Tamba, T. Souma, “Sea surface effects on the sea surface temperature estimation by remote sensing,” Int. J. Remote Sens. 16, 227–238 (1995).
[Crossref]

R. Yokoyama, S. Tamba, T. Souma, D. Llewellyn-Jones, I. M. Parks, “MUBEX: Japan and U.K. collaboration for Mutsu Bay sea surface validation experiment,” in Proceedings of the International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 311–313.

Yoshimori, K.

Zavody, A. M.

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

Appl. Opt. (4)

Bull. Am. Meteorol. Soc. (1)

E. J. Kearns, J. A. Hanafin, R. H. Evans, P. J. Minnet, O. B. Brown, “An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine Atmosphere Emitted Radiance Interferometer (MAERI),” Bull. Am. Meteorol. Soc. 81, 1525–1536 (2000).
[Crossref]

Int. J. Remote Sens. (2)

R. Yokoyama, S. Tamba, T. Souma, “Sea surface effects on the sea surface temperature estimation by remote sensing,” Int. J. Remote Sens. 16, 227–238 (1995).
[Crossref]

I. M. Parkes, T. N. Sheasby, D. T. Llewellyn-Jones, T. J. Nightingale, A. M. Zavody, C. T. Mutlow, R. Yokoyama, S. Tamba, C. J. Donlon, “The Mutsu Bay Experiment: validation of ATSR-1 and ATSR-2 sea surface temperature,” Int. J. Remote Sens. 21, 3445–3460 (2000).
[Crossref]

J. Atmos. Oceanic Technol. (1)

P. D. Watts, M. R. Allen, T. J. Nightingale, “Wind-speed effects on sea surface emission and reflection for the Along-Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
[Crossref]

J. Geophys. Res. (1)

W. J. Emery, H. Grassi, T. Mammen, “On the bulk-skin temperature difference and its impact on satellite remote-sensing of sea surface temperature,” J. Geophys. Res. 95, 13341–13356 (1990).
[Crossref]

J. Opt. Soc. Am. A (2)

Remote Sens. Environ. (1)

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
[Crossref]

Other (2)

R. Yokoyama, S. Tamba, T. Souma, D. Llewellyn-Jones, I. M. Parks, “MUBEX: Japan and U.K. collaboration for Mutsu Bay sea surface validation experiment,” in Proceedings of the International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 311–313.

R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969), p. 144.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Spherical fish float as a reference object. The sea state that appears in the photograph is different from that at the time of the experiment. (b) An infrared image of the reference object obtained by our field experiment. Area A contains the reflection of the object, and area B reflects sky radiation.

Fig. 2
Fig. 2

Topographical map of Mutsu Bay.

Fig. 3
Fig. 3

Setup of the MUBEX experimental apparatus. The TIC and the THI are mounted on the top of a ladder pole placed at the bow of the research vessel. The direction of the TIC is inclined 23° toward the moving direction of the vessel from the nadir of the sea surface, and the direction of the THI is inclined with the same angle toward the moving direction of the vessel from the zenith.

Fig. 4
Fig. 4

Stability of wind conditions and skin SST during the period of measurements. The average brightness temperature (T) and its standard deviation σ T are calculated over each infrared image of the sea surface (255 × 239 pixels). Six circles indicate infrared images used for the measurement of sea surface emissivity (shown in Fig. 5).

Fig. 5
Fig. 5

Six infrared images to be analyzed. Each measurement time is shown under each image. The positions of the reference object are different image by image because these images are obtained from a slowly running vessel. Each position corresponds to a different location of area A and has a different viewing angle of sea surface emissivity.

Fig. 6
Fig. 6

Correspondence of the points on the sea surface in area A and reflection points on the reference object.

Fig. 7
Fig. 7

Measured emissivity of the sea surface from the six infrared images. Each small and bold error bar indicates the accuracy specified by the noise-equivalent temperature resolution, 0.075 °C, of the TIC. Each large error bar shows the variation caused by that of the SST in each B area, which contains approximately 34 to 81 pixels. The dotted curve shows the emissivity of a plane seawater surface, for comparison.

Fig. 8
Fig. 8

Comparison of a part of sea surface images near the reference object: (a) original brightness temperature image and (b) skin SST image recovered by the present method.

Fig. 9
Fig. 9

Coordinate system in the dynamic experimental situation.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

BλTro=λBλT+1-λBλToτλ,ro+1-τλ,roBλTa,
BλTrs=λBλT+1-λBλTsτλ,rs+1-τλ,rsBλTa.
BλT=c4πc1λ51expc2/λT-1,
λ=1-BλTro/τλ,ro-BλTrs/τλ,rs-1/τλ,ro-1/τλ,rsBλTa/BλTo-BλTs.
λ=1-1τλBλTro-BλTrsBλTo-BλTs,
λ=1-BλTro-BλTrsBλTo-BλTs.
BλT=BλToBλTrs-BλTs-BλTsBλTro-BλTo/BλTrs-BλTs-BλTro-BλTo.
¯θ; T= NλBλTλθdλ NλBλTdλ,
s=P-Ht|P-Ht|,
s=sinνp, cosνpsin ϕl, -cosνpcos ϕl,
νp=νmaxpmaxp-pmax2,
ϕl=ϕmaxlmaxlmax2-l+ϕ0.
sinνp=x|P-Ht|,
cosνpsin ϕl=y-Vt|P-Ht|,
cosνpcos ϕl=h|P-Ht|.
x=h tanνpcos ϕl,
y=h tan ϕl+Vt.
y=h tan ϕl+llmax Vτ.
ux=h-r-dtanνpucos ϕlu,
uy=h-r-dtan ϕlu+lulmax Vτ.
o=s-2n·sn,
X=P+bo,
|X-u|=r.
b=-P-u·o-P-u·o2-P-u2+r21/2.
X=h-ZtanνpXcos ϕlX,
Y=h-Ztan ϕlX+lXlmax Vτ.

Metrics