Abstract

We have demonstrated a proof-of-concept optical device that can produce true time delays for a phased-array radar. This device combines White cells of differing lengths with a spatial light modulator to select between the paths on multiple bounces of a given beam. The approach can handle thousands of light beams and produce hundreds of different delays. The number of delays is proportional to the square of the number of bounces.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Norwood, Mass., 1994).
  2. D. D. Curtis, L. M. Sharpe, “True time delay using fiber optic delay lines,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 2, pp. 766–769.
  3. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
    [CrossRef]
  4. A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
    [CrossRef] [PubMed]
  5. W. Ng, A. Narayanan, R. R. Hayes, D. Pereschini, D. Yap, “High-efficiency waveguide-coupled λ=1.3 µm InxGa1-xAs/GaAs MSM detector exhibiting large extinction ratios at L and X band,” IEEE Photon. Technol. Lett. 5, 514–517 (1993).
    [CrossRef]
  6. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
    [CrossRef]
  7. P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave, Guid. Wave Lett. 3, 293–295 (1993).
    [CrossRef]
  8. L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
    [CrossRef]
  9. D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
    [CrossRef]
  10. R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
    [CrossRef]
  11. A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
    [CrossRef]
  12. B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
    [CrossRef]
  13. D. T. K. Tong, M. C. Wu, “Transmit-receive module of multiwavelength optically controlled phased-array antennas,” IEEE Photon. Technol. Lett. 10, 1018–1019 (1998).
    [CrossRef]
  14. H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
    [CrossRef]
  15. P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
    [CrossRef]
  16. R. Taylor, S. Forrest, “Steering of an optically-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
    [CrossRef]
  17. M. Y. Frankel, R. D. Esman, “Dynamic null steering in an ultrawideband time-steered array antenna,” Appl. Opt. 37, 5488–5494 (1998).
    [CrossRef]
  18. D. Dolfi, F. Michel-Gabriel, S. Bann, J. P. Huignard, “Two-dimensional optical architectures for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257, (1991).
    [CrossRef] [PubMed]
  19. H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
    [CrossRef]
  20. X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
    [CrossRef]
  21. N. Madamopoulos, N. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 37, 1407–1416 (1998).
    [CrossRef]
  22. J. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  23. B. L. Anderson, J. Stuart, A. Collins, C. A. Klein, E. A. Beecher, S. B. Brown, “Optically produced true-time delays for phased antenna arrays,” Appl. Opt. 36, 8493–8503 (1997).
    [CrossRef]
  24. J. U. White, “Very long optical paths in air,” J. Opt. Soc. Am. 66, 411–416 (1976).
    [CrossRef]

1998

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

D. T. K. Tong, M. C. Wu, “Transmit-receive module of multiwavelength optically controlled phased-array antennas,” IEEE Photon. Technol. Lett. 10, 1018–1019 (1998).
[CrossRef]

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

R. Taylor, S. Forrest, “Steering of an optically-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

N. Madamopoulos, N. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 37, 1407–1416 (1998).
[CrossRef]

M. Y. Frankel, R. D. Esman, “Dynamic null steering in an ultrawideband time-steered array antenna,” Appl. Opt. 37, 5488–5494 (1998).
[CrossRef]

1997

1996

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

1995

L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

1994

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

1993

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave, Guid. Wave Lett. 3, 293–295 (1993).
[CrossRef]

W. Ng, A. Narayanan, R. R. Hayes, D. Pereschini, D. Yap, “High-efficiency waveguide-coupled λ=1.3 µm InxGa1-xAs/GaAs MSM detector exhibiting large extinction ratios at L and X band,” IEEE Photon. Technol. Lett. 5, 514–517 (1993).
[CrossRef]

1992

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

1991

1990

1976

1942

Anderson, B. L.

Bann, S.

Beecher, E. A.

Brown, S. B.

Chang, Y.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Chen, R.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Cohen, D. A.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Collins, A.

Cooper, D. G.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Curtis, D. D.

D. D. Curtis, L. M. Sharpe, “True time delay using fiber optic delay lines,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 2, pp. 766–769.

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
[CrossRef] [PubMed]

Dexter, J. L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Dolfi, D.

Eldada, L.

L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
[CrossRef]

Esman, R. D.

M. Y. Frankel, R. D. Esman, “Dynamic null steering in an ultrawideband time-steered array antenna,” Appl. Opt. 37, 5488–5494 (1998).
[CrossRef]

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Espiau, F. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Fetterman, H. R.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Forrest, S.

R. Taylor, S. Forrest, “Steering of an optically-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

Forrest, S. M.

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave, Guid. Wave Lett. 3, 293–295 (1993).
[CrossRef]

Forrest, S. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Frankel, M. Y.

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

M. Y. Frankel, R. D. Esman, “Dynamic null steering in an ultrawideband time-steered array antenna,” Appl. Opt. 37, 5488–5494 (1998).
[CrossRef]

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Freitag, P. M.

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave, Guid. Wave Lett. 3, 293–295 (1993).
[CrossRef]

Fu, X.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Goldberg, L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Goutzoulis, A. P.

Hayes, R. R.

W. Ng, A. Narayanan, R. R. Hayes, D. Pereschini, D. Yap, “High-efficiency waveguide-coupled λ=1.3 µm InxGa1-xAs/GaAs MSM detector exhibiting large extinction ratios at L and X band,” IEEE Photon. Technol. Lett. 5, 514–517 (1993).
[CrossRef]

Huignard, J. P.

Kelly, J. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Klein, C. A.

Klumpke, H. W.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

Levi, A. F. J.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Levi, A. G. J.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Li, R. L. Q.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Madamopoulos, N.

Maleki, L.

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Mather, A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Matthews, P. J.

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

Michel-Gabriel, F.

Narayanan, A.

W. Ng, A. Narayanan, R. R. Hayes, D. Pereschini, D. Yap, “High-efficiency waveguide-coupled λ=1.3 µm InxGa1-xAs/GaAs MSM detector exhibiting large extinction ratios at L and X band,” IEEE Photon. Technol. Lett. 5, 514–517 (1993).
[CrossRef]

Newberg, I.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Newberg, I. L.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Ng, W.

W. Ng, A. Narayanan, R. R. Hayes, D. Pereschini, D. Yap, “High-efficiency waveguide-coupled λ=1.3 µm InxGa1-xAs/GaAs MSM detector exhibiting large extinction ratios at L and X band,” IEEE Photon. Technol. Lett. 5, 514–517 (1993).
[CrossRef]

Parent, M. G.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Payson, P.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

Pereschini, D.

W. Ng, A. Narayanan, R. R. Hayes, D. Pereschini, D. Yap, “High-efficiency waveguide-coupled λ=1.3 µm InxGa1-xAs/GaAs MSM detector exhibiting large extinction ratios at L and X band,” IEEE Photon. Technol. Lett. 5, 514–517 (1993).
[CrossRef]

Plant, D. V.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Riza, N.

Scott, D. C.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Sharpe, L. M.

D. D. Curtis, L. M. Sharpe, “True time delay using fiber optic delay lines,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 2, pp. 766–769.

Simonis, G. J.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Steier, W. H.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Stilwell, D.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Stuart, J.

Taylor, R.

R. Taylor, S. Forrest, “Steering of an optically-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

Tong, D. T. K.

D. T. K. Tong, M. C. Wu, “Transmit-receive module of multiwavelength optically controlled phased-array antennas,” IEEE Photon. Technol. Lett. 10, 1018–1019 (1998).
[CrossRef]

Toughlian, E. N.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Norwood, Mass., 1994).

Tsap, B.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

White, J.

White, J. U.

Wu, M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Wu, M. C.

D. T. K. Tong, M. C. Wu, “Transmit-receive module of multiwavelength optically controlled phased-array antennas,” IEEE Photon. Technol. Lett. 10, 1018–1019 (1998).
[CrossRef]

Yao, X. S.

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Yap, D.

W. Ng, A. Narayanan, R. R. Hayes, D. Pereschini, D. Yap, “High-efficiency waveguide-coupled λ=1.3 µm InxGa1-xAs/GaAs MSM detector exhibiting large extinction ratios at L and X band,” IEEE Photon. Technol. Lett. 5, 514–517 (1993).
[CrossRef]

Zmuda, H.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Norwood, Mass., 1994).

Zomp, J. M.

A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Appl. Opt.

IEEE Microwave Guid. Wave Lett.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

IEEE Microwave, Guid. Wave Lett.

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave, Guid. Wave Lett. 3, 293–295 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

W. Ng, A. Narayanan, R. R. Hayes, D. Pereschini, D. Yap, “High-efficiency waveguide-coupled λ=1.3 µm InxGa1-xAs/GaAs MSM detector exhibiting large extinction ratios at L and X band,” IEEE Photon. Technol. Lett. 5, 514–517 (1993).
[CrossRef]

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

D. T. K. Tong, M. C. Wu, “Transmit-receive module of multiwavelength optically controlled phased-array antennas,” IEEE Photon. Technol. Lett. 10, 1018–1019 (1998).
[CrossRef]

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

R. Taylor, S. Forrest, “Steering of an optically-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

J. Lightwave Technol.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
[CrossRef]

J. Opt. Soc. Am.

Opt. Eng.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Opt. Lett.

Other

H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Norwood, Mass., 1994).

D. D. Curtis, L. M. Sharpe, “True time delay using fiber optic delay lines,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 2, pp. 766–769.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) White cell consists of three spherical mirrors all of the same radius of curvature. A spot enters the cell through an input turning mirror. (b) The White cell produces a spot pattern on mirror A. Mirror B images the input spot to spot 1, and mirror C images spot 1 to spot 2. Even spot numbers increase to the right, and odd spot numbers increase to the left.

Fig. 2
Fig. 2

(a) Additional beams can be introduced into the White cell, and each traces a unique spot pattern. (b) The input beams can enter in an array, but each beam still strikes a unique set of spots.

Fig. 3
Fig. 3

To implement switching, we modified the White cell (a) by replacing mirror A with a liquid-crystal SLM and a lens (f 1) to create a White cell in which the polarization can be switched on any bounce for any beam. (b) To form the quadratic cell, a polarizing beam splitter is added to direct the light to alternate White cell mirrors E and F. The distances to E and F are different than to B and C, thus introducing time delays.

Fig. 4
Fig. 4

In our apparatus, the longest path is folded for compactness, and a new image plane of the SLM is introduced to facilitate inputting the beams.

Fig. 5
Fig. 5

Two main imaging conditions in a White cell are that (a) the SLM must image onto itself through each of the White cell mirrors (B is shown), and (b) each White cell mirror must image back onto each of two other White cell mirrors through the SLM. The case for B imaging on C is shown. B and C are in the same plane.

Fig. 6
Fig. 6

Final White cell design for a time-delay increment of 1 ns. A ray trace shows how a spot from the SLM images to another spot through any of the arms B, C, E, or F. Solid lines, SLM images onto itself through either C or F; dotted lines, SLM images onto itself either through B or E.

Fig. 7
Fig. 7

Experimental input optics and measurement apparatus. Light from a 1319-nm Nd:YAG laser is modulated with a frequency-swept rf signal. The light is divided into four input beams by a fiber splitter, and the fiber output faces are imaged onto the input turning mirror. The output beams are separated with a power-dividing beam splitter and sent to rf photodetectors. The demodulated rf signals are measured with a network analyzer, and the time delays are determined.

Fig. 8
Fig. 8

Experimental time-delay data for several delays. (a) The beam goes to A and F every time, and incurs the longest delay. This is our reference delay. (b) The beam goes to E one time fewer and arrives at the output 1 ns earlier. (c) The beam goes to F one time fewer and arrives 6 ns earlier. (d) The beam goes to E and F one time fewer each and arrives at the output 7 ns earlier.

Fig. 9
Fig. 9

Gold backplane pattern of the SLM can introduce cross talk. When a beam overlaps onto the backplane, it is reflected but in an undetermined polarization state.

Fig. 10
Fig. 10

One design for a MEM-based quadratic optical TTD device. The MEM micromirrors are assumed to be able to tip to one of two stable positions at ±θ. One White cell is formed along the -θ (mirrors B and C), and two more spherical mirrors are placed along the +3θ axis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N=m2m2+m2-1=m22+m2-1.

Metrics