Abstract

To investigate the thermo-optical effect in liquid crystal(s) (LC)s the statistical methods of experiment planning are applied. The experiment was conducted in accordance with the technique of orthogonal central compositional planning. In the course of the experiment, physical parameters (scanning velocity, laser beam intensity, LC temperature) have been varied on five levels. The obtained mathematical model describes the dependence of light-scattering texture dimensions in the LC layer on physical parameters of information by thermo-optical registration. Such a model allows us to determine the suitable function model to obtain the preset dimensions of the light-scattering texture in a LC layer.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Kahn, “IR-laser-addressed thermo-optic smectic liquid crystal storage display,” Appl. Phys. Lett. 22, 111–113 (1973).
    [CrossRef]
  2. A. G. Dewey, “Laser-addressed liquid crystal displays,” Opt. Eng. 23, 230–240 (1984).
    [CrossRef]
  3. T. Nakamura, T. Ueno, C. Tani, “Application of side chain type liquid crystal polymer for display and recording devices,” Mol. Cryst. Liq. Cryst. 169, 167–192 (1989).
    [CrossRef]
  4. H. J. Coles, R. Simon, “High-resolution laser-addressed liquid crystal storage displays,” Polymer 26, 1801–1806 (1985).
    [CrossRef]
  5. V. V. Motygin, Y. A. Pugachev, A. L. Pastushenko, N. A. Filinjuk, “The investigation of LC cell temperature field influenced by laser beam,” Mol. Cryst. Liq. Cryst. 282, 1–9 (1996).
    [CrossRef]
  6. G. K. Krug, Statistical Methods in Engineering (Vysshaja shkola, Moscow, 1983).
  7. S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981).

1996

V. V. Motygin, Y. A. Pugachev, A. L. Pastushenko, N. A. Filinjuk, “The investigation of LC cell temperature field influenced by laser beam,” Mol. Cryst. Liq. Cryst. 282, 1–9 (1996).
[CrossRef]

1989

T. Nakamura, T. Ueno, C. Tani, “Application of side chain type liquid crystal polymer for display and recording devices,” Mol. Cryst. Liq. Cryst. 169, 167–192 (1989).
[CrossRef]

1985

H. J. Coles, R. Simon, “High-resolution laser-addressed liquid crystal storage displays,” Polymer 26, 1801–1806 (1985).
[CrossRef]

1984

A. G. Dewey, “Laser-addressed liquid crystal displays,” Opt. Eng. 23, 230–240 (1984).
[CrossRef]

1973

F. M. Kahn, “IR-laser-addressed thermo-optic smectic liquid crystal storage display,” Appl. Phys. Lett. 22, 111–113 (1973).
[CrossRef]

Coles, H. J.

H. J. Coles, R. Simon, “High-resolution laser-addressed liquid crystal storage displays,” Polymer 26, 1801–1806 (1985).
[CrossRef]

Dewey, A. G.

A. G. Dewey, “Laser-addressed liquid crystal displays,” Opt. Eng. 23, 230–240 (1984).
[CrossRef]

Filinjuk, N. A.

V. V. Motygin, Y. A. Pugachev, A. L. Pastushenko, N. A. Filinjuk, “The investigation of LC cell temperature field influenced by laser beam,” Mol. Cryst. Liq. Cryst. 282, 1–9 (1996).
[CrossRef]

Kahn, F. M.

F. M. Kahn, “IR-laser-addressed thermo-optic smectic liquid crystal storage display,” Appl. Phys. Lett. 22, 111–113 (1973).
[CrossRef]

Krug, G. K.

G. K. Krug, Statistical Methods in Engineering (Vysshaja shkola, Moscow, 1983).

Motygin, V. V.

V. V. Motygin, Y. A. Pugachev, A. L. Pastushenko, N. A. Filinjuk, “The investigation of LC cell temperature field influenced by laser beam,” Mol. Cryst. Liq. Cryst. 282, 1–9 (1996).
[CrossRef]

Nakamura, T.

T. Nakamura, T. Ueno, C. Tani, “Application of side chain type liquid crystal polymer for display and recording devices,” Mol. Cryst. Liq. Cryst. 169, 167–192 (1989).
[CrossRef]

Pastushenko, A. L.

V. V. Motygin, Y. A. Pugachev, A. L. Pastushenko, N. A. Filinjuk, “The investigation of LC cell temperature field influenced by laser beam,” Mol. Cryst. Liq. Cryst. 282, 1–9 (1996).
[CrossRef]

Pikin, S. A.

S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981).

Pugachev, Y. A.

V. V. Motygin, Y. A. Pugachev, A. L. Pastushenko, N. A. Filinjuk, “The investigation of LC cell temperature field influenced by laser beam,” Mol. Cryst. Liq. Cryst. 282, 1–9 (1996).
[CrossRef]

Simon, R.

H. J. Coles, R. Simon, “High-resolution laser-addressed liquid crystal storage displays,” Polymer 26, 1801–1806 (1985).
[CrossRef]

Tani, C.

T. Nakamura, T. Ueno, C. Tani, “Application of side chain type liquid crystal polymer for display and recording devices,” Mol. Cryst. Liq. Cryst. 169, 167–192 (1989).
[CrossRef]

Ueno, T.

T. Nakamura, T. Ueno, C. Tani, “Application of side chain type liquid crystal polymer for display and recording devices,” Mol. Cryst. Liq. Cryst. 169, 167–192 (1989).
[CrossRef]

Appl. Phys. Lett.

F. M. Kahn, “IR-laser-addressed thermo-optic smectic liquid crystal storage display,” Appl. Phys. Lett. 22, 111–113 (1973).
[CrossRef]

Mol. Cryst. Liq. Cryst.

T. Nakamura, T. Ueno, C. Tani, “Application of side chain type liquid crystal polymer for display and recording devices,” Mol. Cryst. Liq. Cryst. 169, 167–192 (1989).
[CrossRef]

V. V. Motygin, Y. A. Pugachev, A. L. Pastushenko, N. A. Filinjuk, “The investigation of LC cell temperature field influenced by laser beam,” Mol. Cryst. Liq. Cryst. 282, 1–9 (1996).
[CrossRef]

Opt. Eng.

A. G. Dewey, “Laser-addressed liquid crystal displays,” Opt. Eng. 23, 230–240 (1984).
[CrossRef]

Polymer

H. J. Coles, R. Simon, “High-resolution laser-addressed liquid crystal storage displays,” Polymer 26, 1801–1806 (1985).
[CrossRef]

Other

G. K. Krug, Statistical Methods in Engineering (Vysshaja shkola, Moscow, 1983).

S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

LC cell showing written light-scattering texture.

Fig. 2
Fig. 2

Experimental system for thermo-optic recording on LC cells. 1, He–Ne laser; 2, collimator; 3, 4, 15, mirrors; 5, galvomirror; 6, dichroic mirror; 7, projecting lamp; 8, writing lens; 9, LC cell; 10, projecting lens; 11, heating element; 12, temperature-sensitive element; 13, galvomirror control unit; 14, temperature control unit; 16, screen; 17, measuring microscope.

Fig. 3
Fig. 3

Light-scattering zone width dependence on the scanning velocity V and power density P d (TS-1 - T = 45 °C).

Fig. 4
Fig. 4

Light-scattering zone width dependence on scanning velocity V (P d = 40 W/mm2).

Tables (2)

Tables Icon

Table 1 Planning Matrix

Tables Icon

Table 2 Results of Experiment

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

F=12 C33uzz2+18 C11uzx2+uzy22+12 C13uzzuzx2+uzy2+12 K12uz2x2+2uzy22,
uzz=λ+u1x, zz,
Δf=0D Fdz-D2 C33λ2=D4C33πD2-C13λq2+K1q4a2 sin2qx.
λλc=2πDK1C33C1321/2, qc=πD1/2C33K11/4.
My=φz1, z2,  , zn=β0+i=1N βizi+i;I=1;i<lN βiIzI+i=1N βiIzi2+K,
βi=φziρz=ρz0, βil=2φzizlρz=ρz0, βii=2φz2iρz=ρz0
Myg=φρ/zg.
ŷ=b0+i=1N bizi+i;I=1;i<lN biIzizI+i=1N biizi2+ ,
zi=xi-xi0Δxi.
z˜2=zi2-z¯i2,
b0*=b0-i=1N biiz¯i2,
b0=C0i=1Ny¯g,
bi=C1i=1N zigy¯g,
biI=C2i;I=1N zigzigy¯g,
bii=C3i=1Nzig2-z¯i2y¯g,
ŷ=b0+i=1n bizi+i;I=1n biIzizI+i=1n biizi2-z¯i2=b0*+i=1n bizi+i;I=1;i<ln biIzizI+i=1n bizi2.
t=|b|S2b>ttabl,
d=fV, T, P,
D=nC,
d=D×103K,
V=2lf,
d=20.31-0.61ν+2.8t+2.35p-0.14tp-0.046ν2,

Metrics