Abstract

Based on measurement of the intensity autocorrelation function, a new method to determine the modulation depth of scattered laser light modulated by an ultrasonic wave in turbid media was applied to ultrasound-modulated optical tomography. Good signal-to-noise ratios and high sensitivities were demonstrated. Images of double optically absorbing objects buried in a highly optically scattering gel sample were obtained. The contrast was more than 10%, and the spatial resolution was approximately 2 mm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
    [CrossRef]
  2. G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: Theory,” Proc. Natl. Acad. Sci. USA 95, 14015–14019 (1998).
    [CrossRef] [PubMed]
  3. L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191–1194 (2001).
    [CrossRef]
  4. L.-H. V. Wang, “ Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87(4), 043903, 1–4 (2001).
    [CrossRef]
  5. F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
    [CrossRef]
  6. L.-H. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–632 (1995).
    [CrossRef] [PubMed]
  7. L.-H. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
    [CrossRef]
  8. L.-H. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998).
    [CrossRef]
  9. M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
    [CrossRef]
  10. S. Leveque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  11. G. Yao, L.-H. V. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000).
    [CrossRef]
  12. G. Yao, S.-L. Jiao, L.-H. V. Wang, “Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection,” Opt. Lett. 25, 734–736 (2000).
    [CrossRef]
  13. A. Lev, Z. Kotler, B. G. Sfez, “Ultrasound tagged light imaging in turbid media in a reflectance geometry,” Opt. Lett. 25, 378–380 (2000).
    [CrossRef]

2001

L.-H. V. Wang, “ Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87(4), 043903, 1–4 (2001).
[CrossRef]

L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191–1194 (2001).
[CrossRef]

2000

1999

1998

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: Theory,” Proc. Natl. Acad. Sci. USA 95, 14015–14019 (1998).
[CrossRef] [PubMed]

L.-H. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998).
[CrossRef]

1997

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

L.-H. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
[CrossRef]

1995

Boccara, A. C.

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Engler, W. E.

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: Theory,” Proc. Natl. Acad. Sci. USA 95, 14015–14019 (1998).
[CrossRef] [PubMed]

Genack, A. Z.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Jacques, S. L.

Jiao, S.-L.

Kempe, M.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Kotler, Z.

Ku, G.

Larionov, M.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Lebec, M.

Leutz, W.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Lev, A.

Leveque, S.

Mahan, G. D.

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: Theory,” Proc. Natl. Acad. Sci. USA 95, 14015–14019 (1998).
[CrossRef] [PubMed]

Maret, G.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Saint-Jalmes, H.

Sfez, B. G.

Tiemann, J. J.

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: Theory,” Proc. Natl. Acad. Sci. USA 95, 14015–14019 (1998).
[CrossRef] [PubMed]

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Uzgiris, E.

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: Theory,” Proc. Natl. Acad. Sci. USA 95, 14015–14019 (1998).
[CrossRef] [PubMed]

Wang, L.-H.

Wang, L.-H. V.

Yao, G.

Zaslavsky, D.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Zhao, X.

Appl. Opt.

J. Opt. Soc. Am.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

L.-H. V. Wang, “ Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87(4), 043903, 1–4 (2001).
[CrossRef]

Physica B

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Proc. Natl. Acad. Sci. USA

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: Theory,” Proc. Natl. Acad. Sci. USA 95, 14015–14019 (1998).
[CrossRef] [PubMed]

Other

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: LASER, 532-nm laser with an output of 800 mW; S, sample; W, water; UT, ultrasonic transducer; RFA, RF amplifier; FG, function generator; P, pinholes; PMT, photomultiplier tube; PCU, photon-counting unit; DAC, digital autocorrelator; and C, computer.

Fig. 2
Fig. 2

Configurations of the absorbing objects and photograph of the phantom. The Z axis is along the optical axis that is normal to the sample surface. The Y axis is along the acoustic axis pointing to the sample. The X axis is the direction of scanning, perpendicular to both the acoustic and the optical axes, Y and Z, respectively.

Fig. 3
Fig. 3

Detected scattered light intensity in photon counts per second (filled symbols) and the modulation depth (open symbols) versus the scanning position (X) at various depths (Z) in the gel samples.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ist=I01+M cosΩt+ϕ,
G2τ=IstIst+τ=I021+M2/2cosΩτ.
g2τ=1+M2/2cosΩτ.

Metrics