Abstract

The fiber-optic probe is an essential component of many quantitative fluorescence spectroscopy systems, enabling delivery of excitation light and collection of remitted fluorescence in a wide variety of clinical and laboratory situations. However, there is little information available on the role of illumination-collection geometry to guide the design of these components. Therefore we used a Monte Carlo model to investigate the effect of multifiber probe design parameters—numerical aperture, fiber diameter, source-collection fiber separation distance, and fiber-tissue spacer thickness—on light propagation and the origin of detected fluorescence. An excitation wavelength of 400 nm and an emission wavelength of 630 nm were simulated. Noteworthy effects included an increase in axial selectivity with decreasing fiber size and a transition with increasing fiber-tissue spacer size from a subsurface peak in fluorophore sensitivity to a nearly monotonic decrease typical of single-fiber probes. We provide theoretical evidence that probe design strongly affects tissue interrogation. Therefore application-specific customization of probe design may lead to improvements in the efficacy of fluorescence-based diagnostic devices.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
    [CrossRef] [PubMed]
  2. I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
    [CrossRef] [PubMed]
  3. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
    [CrossRef] [PubMed]
  4. T. Vo-Dinh, M. Panjehpour, B. Overholt, C. Farris, F. Buckley, “Laser-induced differential fluorescence for cancer diagnosis without biopsy,” Appl. Spectrosc. 51, 58–63 (1997).
    [CrossRef]
  5. M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, G. Wagnieres, “In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,” J. Biomed. Opt. 6, 41–51 (2001).
    [CrossRef] [PubMed]
  6. M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
    [PubMed]
  7. H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Spectroscopic and microscopic characteristics of human skin autofluorescence emission,” Photochem. Photobiol. 61, 639–645 (1995).
    [CrossRef] [PubMed]
  8. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
    [CrossRef] [PubMed]
  9. R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
    [CrossRef] [PubMed]
  10. R. DaCosta, B. Wilson, N. Marcon, “Light-induced fluorescence endoscopy of the gastrointestinal tract,” Gastrointest. Endsoc. Clin. N. Am. 10, 37–69 (2000).
  11. R. Richards-Kortum, “Fluorescence spectroscopy of turbid media,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995).
    [CrossRef]
  12. T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Effect of optical fiber probe design on fluorescent light propagation in tissue,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, P. C. Johnson, eds., Proc. SPIE4257, 410–416 (2001).
    [CrossRef]
  13. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
    [CrossRef]
  14. T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, N. Schwartz, “Two steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).
    [CrossRef]
  15. E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
    [CrossRef]
  16. D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 269–283 (2001).
    [CrossRef]
  17. L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002).
    [CrossRef]
  18. H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation,” J. Photochem. Photobiol. B 38, 234–240 (1997).
    [CrossRef] [PubMed]
  19. G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
    [CrossRef] [PubMed]
  20. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, B. Gelebart, “Influence of the emission reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
    [CrossRef]
  21. R. S. DaCosta, L. D. Lilge, J. Kost, M. Cirroco, S. Hassaram, N. Marcon, B. C. Wilson, “Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 98–107 (1997).
    [CrossRef]
  22. A. F. Gmitro, F. W. Cutruzzola, M. L. Stetz, L. I. Deckelbaum, “Measurement depth of laser-induced fluorescence with application to laser angioplasty,” Appl. Opt. 27, 1844–1849 (1988).
    [CrossRef] [PubMed]
  23. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
    [CrossRef] [PubMed]
  24. J. Wu, M. Feld, R. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
    [CrossRef] [PubMed]
  25. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
    [CrossRef]
  26. A. Jakobsson, G. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31, 301–307 (1993).
    [CrossRef] [PubMed]
  27. E. Sevick-Muraca, C. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994).
    [CrossRef] [PubMed]
  28. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
    [CrossRef] [PubMed]
  29. L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  30. S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).
    [CrossRef]
  31. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
    [CrossRef] [PubMed]
  32. R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
    [CrossRef]
  33. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
    [CrossRef] [PubMed]
  34. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
    [CrossRef] [PubMed]
  35. T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Long-term effects of photodynamic therapy on fluorescence spectroscopy in the human esophagus,” Photochem. Photobiol. 73, 664–668 (2001).
    [CrossRef] [PubMed]
  36. T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999).
    [CrossRef] [PubMed]

2002 (2)

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002).
[CrossRef]

2001 (6)

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Long-term effects of photodynamic therapy on fluorescence spectroscopy in the human esophagus,” Photochem. Photobiol. 73, 664–668 (2001).
[CrossRef] [PubMed]

M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, G. Wagnieres, “In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,” J. Biomed. Opt. 6, 41–51 (2001).
[CrossRef] [PubMed]

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 269–283 (2001).
[CrossRef]

2000 (1)

R. DaCosta, B. Wilson, N. Marcon, “Light-induced fluorescence endoscopy of the gastrointestinal tract,” Gastrointest. Endsoc. Clin. N. Am. 10, 37–69 (2000).

1999 (1)

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999).
[CrossRef] [PubMed]

1998 (3)

1997 (4)

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
[CrossRef] [PubMed]

T. Vo-Dinh, M. Panjehpour, B. Overholt, C. Farris, F. Buckley, “Laser-induced differential fluorescence for cancer diagnosis without biopsy,” Appl. Spectrosc. 51, 58–63 (1997).
[CrossRef]

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation,” J. Photochem. Photobiol. B 38, 234–240 (1997).
[CrossRef] [PubMed]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

1996 (3)

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

1995 (2)

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Spectroscopic and microscopic characteristics of human skin autofluorescence emission,” Photochem. Photobiol. 61, 639–645 (1995).
[CrossRef] [PubMed]

1994 (2)

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

E. Sevick-Muraca, C. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994).
[CrossRef] [PubMed]

1993 (3)

J. Wu, M. Feld, R. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

A. Jakobsson, G. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31, 301–307 (1993).
[CrossRef] [PubMed]

1992 (1)

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

1989 (2)

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

1988 (1)

Arendt, J. T.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Arridge, S. R.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Atkinson, N.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Avrillier, S.

Backman, V.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Badizadegan, K.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Barton, J. K.

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999).
[CrossRef] [PubMed]

Bast, R.

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

Bays, R.

Bigio, I. J.

Boiko, I.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Bottiroli, G.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Braichotte, D.

Brewer, M.

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

Brookner, C.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Buckley, F.

Burch, C.

Burke, G.

Chan, E.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Cirroco, M.

R. S. DaCosta, L. D. Lilge, J. Kost, M. Cirroco, S. Hassaram, N. Marcon, B. C. Wilson, “Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 98–107 (1997).
[CrossRef]

Compton, C. C.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Cope, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Cothren, R.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

Cothren, R. M.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Crawford, J. M.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Criswell, G.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Croce, A. C.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Crum, C. P.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Cutruzzola, F. W.

DaCosta, R.

R. DaCosta, B. Wilson, N. Marcon, “Light-induced fluorescence endoscopy of the gastrointestinal tract,” Gastrointest. Endsoc. Clin. N. Am. 10, 37–69 (2000).

DaCosta, R. S.

R. S. DaCosta, L. D. Lilge, J. Kost, M. Cirroco, S. Hassaram, N. Marcon, B. C. Wilson, “Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 98–107 (1997).
[CrossRef]

Dal Fante, M.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Dasari, R. R.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Deckelbaum, L. I.

Delpy, D. T.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Deutsch, T. F.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Di Palma, S.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Drezek, R.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Ediger, M. N.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

Essenpreis, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Ettori, D.

Farrell, T. J.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 269–283 (2001).
[CrossRef]

Farris, C.

Feld, M.

Feld, M. S.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

Firbank, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Flotte, T. J.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Follen, M.

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Foster, T. H.

E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
[CrossRef]

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, N. Schwartz, “Two steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).
[CrossRef]

Frisoli, J. K.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Fumagalli, S.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Gardner, C.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Gelebart, B.

Georgakoudi, I.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Gershenson, D.

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

Gmitro, A. F.

Goujon, D.

M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, G. Wagnieres, “In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,” J. Biomed. Opt. 6, 41–51 (2001).
[CrossRef] [PubMed]

Grosjean, P.

M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, G. Wagnieres, “In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,” J. Biomed. Opt. 6, 41–51 (2001).
[CrossRef] [PubMed]

Hassaram, S.

R. S. DaCosta, L. D. Lilge, J. Kost, M. Cirroco, S. Hassaram, N. Marcon, B. C. Wilson, “Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 98–107 (1997).
[CrossRef]

Hayes, G.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

Hill, L.

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

Hiraoka, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Hull, E. L.

E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
[CrossRef]

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, N. Schwartz, “Two steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).
[CrossRef]

Hyde, D. E.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 269–283 (2001).
[CrossRef]

Jack, D. A.

Jacques, S. L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).
[CrossRef]

Jakobsson, A.

A. Jakobsson, G. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31, 301–307 (1993).
[CrossRef] [PubMed]

Johnson, T. M.

Keijzer, M.

Kittrell, C.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

Kolubayev, T.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

Kost, J.

R. S. DaCosta, L. D. Lilge, J. Kost, M. Cirroco, S. Hassaram, N. Marcon, B. C. Wilson, “Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 98–107 (1997).
[CrossRef]

Kramer, J. R.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

Lilge, L. D.

R. S. DaCosta, L. D. Lilge, J. Kost, M. Cirroco, S. Hassaram, N. Marcon, B. C. Wilson, “Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 98–107 (1997).
[CrossRef]

Lotan, R.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

MacAulay, C.

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation,” J. Photochem. Photobiol. B 38, 234–240 (1997).
[CrossRef] [PubMed]

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Spectroscopic and microscopic characteristics of human skin autofluorescence emission,” Photochem. Photobiol. 61, 639–645 (1995).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Malpica, A.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Manoharan, R.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Marchesini, R.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Marcon, N.

R. DaCosta, B. Wilson, N. Marcon, “Light-induced fluorescence endoscopy of the gastrointestinal tract,” Gastrointest. Endsoc. Clin. N. Am. 10, 37–69 (2000).

R. S. DaCosta, L. D. Lilge, J. Kost, M. Cirroco, S. Hassaram, N. Marcon, B. C. Wilson, “Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 98–107 (1997).
[CrossRef]

McLean, D. I.

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation,” J. Photochem. Photobiol. B 38, 234–240 (1997).
[CrossRef] [PubMed]

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Spectroscopic and microscopic characteristics of human skin autofluorescence emission,” Photochem. Photobiol. 61, 639–645 (1995).
[CrossRef] [PubMed]

Mehta, A.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

Milner, T. E.

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999).
[CrossRef] [PubMed]

Mitchell, M. F.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Monnier, P.

M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, G. Wagnieres, “In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,” J. Biomed. Opt. 6, 41–51 (2001).
[CrossRef] [PubMed]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

Mourant, J. R.

Muller, M. G.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Nelson, J. S.

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999).
[CrossRef] [PubMed]

Nichols, M. G.

E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
[CrossRef]

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, N. Schwartz, “Two steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).
[CrossRef]

Nilsson, G.

A. Jakobsson, G. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31, 301–307 (1993).
[CrossRef] [PubMed]

Nishioka, N. S.

T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Long-term effects of photodynamic therapy on fluorescence spectroscopy in the human esophagus,” Photochem. Photobiol. 73, 664–668 (2001).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Effect of optical fiber probe design on fluorescent light propagation in tissue,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, P. C. Johnson, eds., Proc. SPIE4257, 410–416 (2001).
[CrossRef]

Overholt, B.

Palcic, B.

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation,” J. Photochem. Photobiol. B 38, 234–240 (1997).
[CrossRef] [PubMed]

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Spectroscopic and microscopic characteristics of human skin autofluorescence emission,” Photochem. Photobiol. 61, 639–645 (1995).
[CrossRef] [PubMed]

Panjehpour, M.

Patterson, M. S.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 269–283 (2001).
[CrossRef]

Pavlova, I.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

Pfefer, J.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Pfefer, T. J.

T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Long-term effects of photodynamic therapy on fluorescence spectroscopy in the human esophagus,” Photochem. Photobiol. 73, 664–668 (2001).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Effect of optical fiber probe design on fluorescent light propagation in tissue,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, P. C. Johnson, eds., Proc. SPIE4257, 410–416 (2001).
[CrossRef]

Pignoli, E.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Pogue, B. W.

Quan, L.

Ramanujam, N.

L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002).
[CrossRef]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Ratliff, N. B.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

Rava, R.

Richards-Kortum, R.

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

R. Richards-Kortum, “Fluorescence spectroscopy of turbid media,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995).
[CrossRef]

Richards-Kortum, R. R.

Richter, J. M.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Rifkin, D. S.

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, N. Schwartz, “Two steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).
[CrossRef]

Robert, D.

Satterfield, W.

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

Savary, J. F.

Schomacker, K. T.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Long-term effects of photodynamic therapy on fluorescence spectroscopy in the human esophagus,” Photochem. Photobiol. 73, 664–668 (2001).
[CrossRef] [PubMed]

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Effect of optical fiber probe design on fluorescent light propagation in tissue,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, P. C. Johnson, eds., Proc. SPIE4257, 410–416 (2001).
[CrossRef]

Schwartz, N.

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, N. Schwartz, “Two steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).
[CrossRef]

Sevick-Muraca, E.

Sheets, E. E.

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Sichirollo, A. E.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Smithies, D. J.

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999).
[CrossRef] [PubMed]

Spinelli, P.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Staerkel, G.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Stetz, M. L.

Thomsen, S. L.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Tinet, E.

Tomatis, S.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Tualle, J. M.

Utzinger, U.

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

Van Dam, J.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

van den Bergh, H.

M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, G. Wagnieres, “In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,” J. Biomed. Opt. 6, 41–51 (2001).
[CrossRef] [PubMed]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

van der Zee, P.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

van Gemert, M. J. C.

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999).
[CrossRef] [PubMed]

Vo-Dinh, T.

Wagnieres, G.

M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, G. Wagnieres, “In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,” J. Biomed. Opt. 6, 41–51 (2001).
[CrossRef] [PubMed]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).
[CrossRef]

Warren, S.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Welch, A. J.

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999).
[CrossRef] [PubMed]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Wharton, J. T.

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

Wilson, B.

R. DaCosta, B. Wilson, N. Marcon, “Light-induced fluorescence endoscopy of the gastrointestinal tract,” Gastrointest. Endsoc. Clin. N. Am. 10, 37–69 (2000).

Wilson, B. C.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 269–283 (2001).
[CrossRef]

R. S. DaCosta, L. D. Lilge, J. Kost, M. Cirroco, S. Hassaram, N. Marcon, B. C. Wilson, “Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 98–107 (1997).
[CrossRef]

Wright, T.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Wu, J.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

J. Wu, M. Feld, R. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

Zellweger, M.

M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, G. Wagnieres, “In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,” J. Biomed. Opt. 6, 41–51 (2001).
[CrossRef] [PubMed]

Zeng, H.

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation,” J. Photochem. Photobiol. B 38, 234–240 (1997).
[CrossRef] [PubMed]

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Spectroscopic and microscopic characteristics of human skin autofluorescence emission,” Photochem. Photobiol. 61, 639–645 (1995).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Zonios, G. I.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Am. Heart J. (1)

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989).
[CrossRef] [PubMed]

Am. J. Obstet. Gynecol. (1)

I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002).
[CrossRef] [PubMed]

Appl. Opt. (8)

A. F. Gmitro, F. W. Cutruzzola, M. L. Stetz, L. I. Deckelbaum, “Measurement depth of laser-induced fluorescence with application to laser angioplasty,” Appl. Opt. 27, 1844–1849 (1988).
[CrossRef] [PubMed]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

J. Wu, M. Feld, R. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, B. Gelebart, “Influence of the emission reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
[CrossRef]

B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
[CrossRef]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
[CrossRef]

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Cancer Epidemiol. Biomarkers Prev. (1)

M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001).
[PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Gastrointest. Endsoc. Clin. N. Am. (1)

R. DaCosta, B. Wilson, N. Marcon, “Light-induced fluorescence endoscopy of the gastrointestinal tract,” Gastrointest. Endsoc. Clin. N. Am. 10, 37–69 (2000).

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, G. Wagnieres, “In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,” J. Biomed. Opt. 6, 41–51 (2001).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (1)

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation,” J. Photochem. Photobiol. B 38, 234–240 (1997).
[CrossRef] [PubMed]

Lasers Surg. Med. (4)

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

A. Jakobsson, G. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31, 301–307 (1993).
[CrossRef] [PubMed]

Opt. Lett. (2)

Photochem. Photobiol. (4)

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Long-term effects of photodynamic therapy on fluorescence spectroscopy in the human esophagus,” Photochem. Photobiol. 73, 664–668 (2001).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Spectroscopic and microscopic characteristics of human skin autofluorescence emission,” Photochem. Photobiol. 61, 639–645 (1995).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 269–283 (2001).
[CrossRef]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Other (5)

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).
[CrossRef]

R. S. DaCosta, L. D. Lilge, J. Kost, M. Cirroco, S. Hassaram, N. Marcon, B. C. Wilson, “Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 98–107 (1997).
[CrossRef]

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, N. Schwartz, “Two steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).
[CrossRef]

R. Richards-Kortum, “Fluorescence spectroscopy of turbid media,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Effect of optical fiber probe design on fluorescent light propagation in tissue,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, P. C. Johnson, eds., Proc. SPIE4257, 410–416 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of fiber-optic probe geometric parameters: (a) shows fiber-tissue spacer thickness S, whereas the top view of the probe in (b) illustrates the source fiber diameter D s , collection fiber diameter D c , and source-collection separation distance L.

Fig. 2
Fig. 2

Effect of fiber geometry parameters on total detected fluorescence signal, 80% probing depth, and path length. In each of the four graphs, a single parameter is varied—(a) D s , (b) D c , (c) L, and (d) S—as the other three are held constant. Default parameter values are D c = 0.2 mm, D s = 0.2 mm, L = 0.05 mm, and S = 0 mm.

Fig. 3
Fig. 3

Effect of NA on axial emission distribution for probes with different source fiber diameters: probe A (D s = 0.20 mm) and probe B (D s = 0.40 mm). Other fiber design parameters are held constant: D c = 0.20 mm, L = 0.05 mm and S = 0 mm. The following NA values were simulated: 0.22, 0.4, and 0.22/1.37 (0.22 for source, 1.37 for collection). Data are normalized to the total fluorescence detected.

Fig. 4
Fig. 4

Effect of source-collection fiber separation distance L on axial emission profiles for D s = 0.2 mm, D c = 0.2 mm, and S = 0 mm. Data are presented as a fraction of excitation photons launched (fluorescence detected ×10-5).

Fig. 5
Fig. 5

Effect of collection fiber diameter D c on axial emission profile for D s = 0.2 mm, L = 0.05 mm, and S = 0 mm. Data are normalized to the total fluorescence detected.

Fig. 6
Fig. 6

Effect of fiber-tissue spacer thickness S on axial emission profile for a probe with the following parameters: D s = 0.2 mm, D c = 0.2 mm, and L = 0.05 mm. Data are normalized to the total fluorescence detected.

Fig. 7
Fig. 7

Effect of collection fiber diameter D c on photon pair path length for a probe with the following parameters: D s = 0.2 mm, L = 0.05 mm, and S = 0 mm. Data are normalized to the maximum value in each curve.

Fig. 8
Fig. 8

Effect of lateral fiber separation distance L on photon pair path length for a probe with the following parameters: D s = 0.2 mm, D c = 0.2 mm, and S = 0 mm. Data are normalized to the total fluorescence detected.

Fig. 9
Fig. 9

Effect of fiber-tissue spacer distance S on photon pair path length for a probe with the following parameters: D s = 0.2 mm, D c = 0.2 mm, and L = 0.05 mm. Data are normalized to the total fluorescence detected.

Tables (1)

Tables Icon

Table 1 Optical Properties Used in the Simulationsa

Metrics