Abstract

In the infrared wavelength region, a typical star is approximately a million times brighter than the planet that surrounds it, which is a major problem when we attempt to detect exoplanets in a direct manner. Nulling interferometry is a technique that one can use to solve this problem by attenuating the stellar light and enhancing that of the planet. Generally, deep nulling is achieved by use of achromatic phase shifters (APSs). Unfortunately, the technology needed to build these APSs is not yet fully developed. We show that deep nulling can also be achieved by using delay lines only. We investigate the nulling depth as a function of the width of the wavelength interval and the number of telescopes. We also show that we can obtain nulling depths of less than 10-6, which are required for exoplanet detection. Furthermore, we investigate the properties of the transmission map and make a comparison between our system and an APS system.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. N. Bracewell, “Detecting nonsolar planets by spinning infrared interferometer,” Nature (London) 274, 780–781 (1978).
    [Crossref]
  2. R. N. Bracewell, R. H. MacPhie, “Searching for nonsolar planets,” Icarus 38, 136–147 (1979).
    [Crossref]
  3. A. L. Mieremet, J. J. M. Braat, H. Bokhove, K. Ravel, “Achromatic phase shifting using adjustable dispersive elements,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 1035–1041 (2000).
    [Crossref]
  4. R. M. Morgan, J. H. Burge, N. J. Woolf, “Nulling interferometric beam combiner utilizing dielectric plates: experimental results in the visible broadband,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 340–348 (2000).
    [Crossref]
  5. E. Serabyn, “Nanometer-level path-length control scheme for nulling interferometry,” Appl. Opt. 38, 4213–4216 (1999).
    [Crossref]
  6. E. Serabyn, J. K. Wallace, G. J. Hardy, E. G. H. Schmidtlin, H. T. Nguyen, “Deep nulling of visible laser light,” Appl. Opt. 38, 7128–7132 (1999).
    [Crossref]
  7. J. R. P. Angel, N. J. Woolf, “An imaging nulling interferometer to study extrasolar planets,” Astrophys. J. 475, 373–379 (1997).
    [Crossref]
  8. A. Karlsson, B. P. Mennesson, “Robin Laurence nulling interferometers,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 871–880 (2000).
    [Crossref]
  9. B. Mennesson, J. M. Mariotti, “Array configurations for a space infrared nulling interferometer dedicated to the search for earthlike extrasolar planets,” Icarus 128, 202–212 (1997).
    [Crossref]
  10. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
    [Crossref]
  11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992), pp. 408–412.
  12. A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, “Could we search for primitive life on extrasolar planets in the near future? The DARWIN project,” Icarus 123, 249–255 (1996).
    [Crossref]

1999 (2)

1997 (2)

J. R. P. Angel, N. J. Woolf, “An imaging nulling interferometer to study extrasolar planets,” Astrophys. J. 475, 373–379 (1997).
[Crossref]

B. Mennesson, J. M. Mariotti, “Array configurations for a space infrared nulling interferometer dedicated to the search for earthlike extrasolar planets,” Icarus 128, 202–212 (1997).
[Crossref]

1996 (1)

A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, “Could we search for primitive life on extrasolar planets in the near future? The DARWIN project,” Icarus 123, 249–255 (1996).
[Crossref]

1979 (1)

R. N. Bracewell, R. H. MacPhie, “Searching for nonsolar planets,” Icarus 38, 136–147 (1979).
[Crossref]

1978 (1)

R. N. Bracewell, “Detecting nonsolar planets by spinning infrared interferometer,” Nature (London) 274, 780–781 (1978).
[Crossref]

1965 (1)

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[Crossref]

Angel, J. R. P.

J. R. P. Angel, N. J. Woolf, “An imaging nulling interferometer to study extrasolar planets,” Astrophys. J. 475, 373–379 (1997).
[Crossref]

Bokhove, H.

A. L. Mieremet, J. J. M. Braat, H. Bokhove, K. Ravel, “Achromatic phase shifting using adjustable dispersive elements,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 1035–1041 (2000).
[Crossref]

Braat, J. J. M.

A. L. Mieremet, J. J. M. Braat, H. Bokhove, K. Ravel, “Achromatic phase shifting using adjustable dispersive elements,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 1035–1041 (2000).
[Crossref]

Bracewell, R. N.

R. N. Bracewell, R. H. MacPhie, “Searching for nonsolar planets,” Icarus 38, 136–147 (1979).
[Crossref]

R. N. Bracewell, “Detecting nonsolar planets by spinning infrared interferometer,” Nature (London) 274, 780–781 (1978).
[Crossref]

Burge, J. H.

R. M. Morgan, J. H. Burge, N. J. Woolf, “Nulling interferometric beam combiner utilizing dielectric plates: experimental results in the visible broadband,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 340–348 (2000).
[Crossref]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992), pp. 408–412.

Hardy, G. J.

Karlsson, A.

A. Karlsson, B. P. Mennesson, “Robin Laurence nulling interferometers,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 871–880 (2000).
[Crossref]

Leger, A.

A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, “Could we search for primitive life on extrasolar planets in the near future? The DARWIN project,” Icarus 123, 249–255 (1996).
[Crossref]

MacPhie, R. H.

R. N. Bracewell, R. H. MacPhie, “Searching for nonsolar planets,” Icarus 38, 136–147 (1979).
[Crossref]

Mariotti, J. M.

B. Mennesson, J. M. Mariotti, “Array configurations for a space infrared nulling interferometer dedicated to the search for earthlike extrasolar planets,” Icarus 128, 202–212 (1997).
[Crossref]

A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, “Could we search for primitive life on extrasolar planets in the near future? The DARWIN project,” Icarus 123, 249–255 (1996).
[Crossref]

Mead, R.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[Crossref]

Mennesson, B.

B. Mennesson, J. M. Mariotti, “Array configurations for a space infrared nulling interferometer dedicated to the search for earthlike extrasolar planets,” Icarus 128, 202–212 (1997).
[Crossref]

A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, “Could we search for primitive life on extrasolar planets in the near future? The DARWIN project,” Icarus 123, 249–255 (1996).
[Crossref]

Mennesson, B. P.

A. Karlsson, B. P. Mennesson, “Robin Laurence nulling interferometers,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 871–880 (2000).
[Crossref]

Mieremet, A. L.

A. L. Mieremet, J. J. M. Braat, H. Bokhove, K. Ravel, “Achromatic phase shifting using adjustable dispersive elements,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 1035–1041 (2000).
[Crossref]

Morgan, R. M.

R. M. Morgan, J. H. Burge, N. J. Woolf, “Nulling interferometric beam combiner utilizing dielectric plates: experimental results in the visible broadband,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 340–348 (2000).
[Crossref]

Nelder, J. A.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[Crossref]

Nguyen, H. T.

Ollivier, M.

A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, “Could we search for primitive life on extrasolar planets in the near future? The DARWIN project,” Icarus 123, 249–255 (1996).
[Crossref]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992), pp. 408–412.

Puget, J. L.

A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, “Could we search for primitive life on extrasolar planets in the near future? The DARWIN project,” Icarus 123, 249–255 (1996).
[Crossref]

Ravel, K.

A. L. Mieremet, J. J. M. Braat, H. Bokhove, K. Ravel, “Achromatic phase shifting using adjustable dispersive elements,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 1035–1041 (2000).
[Crossref]

Rouan, D.

A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, “Could we search for primitive life on extrasolar planets in the near future? The DARWIN project,” Icarus 123, 249–255 (1996).
[Crossref]

Schmidtlin, E. G. H.

Schneider, J.

A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, “Could we search for primitive life on extrasolar planets in the near future? The DARWIN project,” Icarus 123, 249–255 (1996).
[Crossref]

Serabyn, E.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992), pp. 408–412.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992), pp. 408–412.

Wallace, J. K.

Woolf, N. J.

J. R. P. Angel, N. J. Woolf, “An imaging nulling interferometer to study extrasolar planets,” Astrophys. J. 475, 373–379 (1997).
[Crossref]

R. M. Morgan, J. H. Burge, N. J. Woolf, “Nulling interferometric beam combiner utilizing dielectric plates: experimental results in the visible broadband,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 340–348 (2000).
[Crossref]

Appl. Opt. (2)

Astrophys. J. (1)

J. R. P. Angel, N. J. Woolf, “An imaging nulling interferometer to study extrasolar planets,” Astrophys. J. 475, 373–379 (1997).
[Crossref]

Comput. J. (1)

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[Crossref]

Icarus (3)

A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, “Could we search for primitive life on extrasolar planets in the near future? The DARWIN project,” Icarus 123, 249–255 (1996).
[Crossref]

R. N. Bracewell, R. H. MacPhie, “Searching for nonsolar planets,” Icarus 38, 136–147 (1979).
[Crossref]

B. Mennesson, J. M. Mariotti, “Array configurations for a space infrared nulling interferometer dedicated to the search for earthlike extrasolar planets,” Icarus 128, 202–212 (1997).
[Crossref]

Nature (London) (1)

R. N. Bracewell, “Detecting nonsolar planets by spinning infrared interferometer,” Nature (London) 274, 780–781 (1978).
[Crossref]

Other (4)

A. L. Mieremet, J. J. M. Braat, H. Bokhove, K. Ravel, “Achromatic phase shifting using adjustable dispersive elements,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 1035–1041 (2000).
[Crossref]

R. M. Morgan, J. H. Burge, N. J. Woolf, “Nulling interferometric beam combiner utilizing dielectric plates: experimental results in the visible broadband,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 340–348 (2000).
[Crossref]

A. Karlsson, B. P. Mennesson, “Robin Laurence nulling interferometers,” in Interferometry in Optical Astronomy, P. J. Léna, A. Quirrenbach, eds., Proc. SPIE4006, 871–880 (2000).
[Crossref]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992), pp. 408–412.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic setup of a synthetic aperture system. The kth telescope, with position B k , provides a beam with amplitude A 0(λ, r) f k and phase ϕ k . A geometric delay, B k · r, arises if the wave front enters the array at nonnormal incidence. Each beam passes a delay line, which compensates the geometric delay of a wave front from a target star and additionally introduces a path delay of d k .

Fig. 2
Fig. 2

Rejection ratio R N (m) as a function of bandwidth m for N = 2 … 8. Each graph is calculated for 400 different values of m. We conclude that an increase of the number of telescopes improves the resulting rejection ratio for a given m.

Fig. 3
Fig. 3

Solutions found for {d k } as a function of bandwidth m for N = 5. Aperture 3 is used as a reference, which means that we have defined d 3 = 0. Curves d 1 and d 5 are exactly the opposite of each other. The same is true for d 2 and d 4.

Fig. 4
Fig. 4

Solutions found for {f k } as a function of bandwidth m for N = 5. Aperture 3 is used as a reference, which means that we have defined f 3 = 1. The f 1 and f 5 curves and the f 2 and f 4 curves are the same.

Fig. 5
Fig. 5

Transmission of the star as a function of wavelength after optimization of the rejection ratio for m = 2.5 and N = 4. The dotted line represents the average transmission level.

Fig. 6
Fig. 6

Cross section of the transmission map plotted in Fig. 7(a) on the y = 0 line. For large values of r the transmission approaches unity, because the temporal coherence tends to zero.

Fig. 7
Fig. 7

Four possible transmission maps for an array consisting of four telescopes with a bandwidth of m = 2.5: (a) {d k } = {1.09, 0.362, -0.362, -1.09}; (b) {d k } = {-1.09, 0.362, -0.362, 1.09}; (c) {d k } = {-1.09, -0.362, 0.362, 1.09}; (d) {d k } = {1.09, -0.362, 0.362, -1.09}.

Fig. 8
Fig. 8

Transmission map of an array equipped with APSs.

Fig. 9
Fig. 9

Cross section of the transmission map plotted in Fig. 8 on the y = 0 line.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Aλ, r= A0λ, rk=1N fk expiϕk,
ϕk=2πλdk+Bk · r,
INλ, r =A02λ, rk=1N fk2+2 k=1Nl>kN fkfl×cos2πλdk-dl +Bk-Bl · r,
TNλ, r=INλ, rA02λ, rk=1N fk2=1+2×k=1Nl>kN fkfl cos2πλdk-dl+ Bk-Bl · rk=1N fk2.
Tavg,Nλ, r=1λ2-λ1λ1λ2 TNλ, rdλ =1m-11m TNλ, rdλ,
RNm=m-1k=1N fk2m-1k=1N fk2+2 k=1Nl>kN fkfl1mcos2πλdk-dldλ.
m=Cm,
dk=1.09, 0.362, -0.362, -1.09, fk=0.487, 1, 1, 0.487,
Bk =B, 0, 0, B, -B, 0, 0, -B,
Tmax,N=k=1N fk2k=1N fk2.

Metrics