Abstract

We address the issues that were raised by Tycho and Jørgensen [Appl. Opt. 41, 4709 (2002)] concerning our strategy [Appl. Opt. 39, 5244 (2000)] for incorporating the wave properties of light in the description of a propagating focused excitation beam in a highly scattering medium. We explain that the strategy is consistent with the Huygens-Fresnel principle and does not violate the energy conservation principle.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Daria, C. Saloma, S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244–5255 (2000).
    [CrossRef]
  2. S. T. Flock, M. S. Patterson, B. C. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).
    [CrossRef] [PubMed]
  3. J. M. Schmitt, A. Knuttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
    [CrossRef]
  4. J. M. Schmitt, K. Ben-Letaief, “Efficient Monte Carlo simulation of confocal microscopy in biological tissue,” J. Opt. Soc. Am. A 13, 952–961 (1996).
    [CrossRef]
  5. C. Blanca, C. Saloma, “Efficient analysis of temporal broadening of a pulsed focused Gaussian beam in scattering media,” Appl. Opt. 38, 5433–5437 (1999).
    [CrossRef]
  6. X. Gan, M. Gu, “Spatial distribution of single-photon and two-photon fluorescence light in scattering media: Monte Carlo simulation,” Appl. Opt. 39, 1575–1579 (2000).
    [CrossRef]
  7. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  8. A. Tycho, T. Jørgensen, “Comment on “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 41, 4709–4711 (2002).
    [CrossRef] [PubMed]
  9. V. R. Daria, C. Saloma, S. Kawata, “Modified Monte Carlo of photon transport for studying the imaging properties in highly scattering media,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4251, 228–231 (2001).
    [CrossRef]
  10. M. O. Scully, M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, England, 1997).
    [CrossRef]

2002 (1)

2000 (2)

1999 (1)

1996 (1)

1994 (1)

1989 (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).
[CrossRef] [PubMed]

Ben-Letaief, K.

Blanca, C.

Daria, V. R.

V. R. Daria, C. Saloma, S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244–5255 (2000).
[CrossRef]

V. R. Daria, C. Saloma, S. Kawata, “Modified Monte Carlo of photon transport for studying the imaging properties in highly scattering media,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4251, 228–231 (2001).
[CrossRef]

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).
[CrossRef] [PubMed]

Gan, X.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

Gu, M.

Jørgensen, T.

Kawata, S.

V. R. Daria, C. Saloma, S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244–5255 (2000).
[CrossRef]

V. R. Daria, C. Saloma, S. Kawata, “Modified Monte Carlo of photon transport for studying the imaging properties in highly scattering media,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4251, 228–231 (2001).
[CrossRef]

Knuttel, A.

Patterson, M. S.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).
[CrossRef] [PubMed]

Saloma, C.

V. R. Daria, C. Saloma, S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244–5255 (2000).
[CrossRef]

C. Blanca, C. Saloma, “Efficient analysis of temporal broadening of a pulsed focused Gaussian beam in scattering media,” Appl. Opt. 38, 5433–5437 (1999).
[CrossRef]

V. R. Daria, C. Saloma, S. Kawata, “Modified Monte Carlo of photon transport for studying the imaging properties in highly scattering media,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4251, 228–231 (2001).
[CrossRef]

Schmitt, J. M.

Scully, M. O.

M. O. Scully, M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, England, 1997).
[CrossRef]

Tycho, A.

Wilson, B. C.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).
[CrossRef] [PubMed]

Wyman, D.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).
[CrossRef] [PubMed]

Yadlowsky, M.

Zubairy, M. S.

M. O. Scully, M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, England, 1997).
[CrossRef]

Appl. Opt. (4)

IEEE Trans. Biomed. Eng. (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Other (3)

V. R. Daria, C. Saloma, S. Kawata, “Modified Monte Carlo of photon transport for studying the imaging properties in highly scattering media,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4251, 228–231 (2001).
[CrossRef]

M. O. Scully, M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, England, 1997).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (3)

Equations on this page are rendered with MathJax. Learn more.

UP=A Uξ, ψFξ, ψhξ, ψ; x, ydξdψ,
MsP=mκmθrmp-2 =κmθrmpmin-2 ×mκmθrmp-2κmθrmpmin2,
umP=κq1q2θκq2q3θκqLpθ ×rq1q2rq2q3rqLp-2FPo/roq ×expjkroq+rq1q2+rq2q3+rqLp,

Metrics