Abstract

Previously we described a method for estimating the thermal conductivity of magneto-optic recording media. The method relies on identifying the laser power that brings the maximum temperature of the TbFeCo layer to as high as the Curie temperature. We extensively use a similar method to estimate the heat capacity of a dielectric layer, a TbFeCo layer, and an aluminum alloy layer of magneto-optic recording media. Measurements are conducted on static disks with a beam of light focused on a TbFeCo layer. The method has the advantage of thermal diffusion depending on a multilayer structure and irradiation time.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mansuripur, The Physical Principles of Magneto-Optical Recording (Cambridge U. Press, London, 1995).
    [CrossRef]
  2. T. Maeda, “High-density recording mechanism of magneto-optical disks,” Jpn. J. Appl. Phys. 36, 504–513 (1997).
    [CrossRef]
  3. T. Abiko, A. Konishi, M. Kagawa, S. Igarashi, “Thermal response design for high recording density magneto-optical media,” Jpn. J. Appl. Phys. 36, 410–413 (1997).
    [CrossRef]
  4. X. Xun, C. Peng, M. Mansuripur, “Estimation of thermal conductivity of magneto-optic media,” Appl. Opt. 39, 4355–4360 (2000).
    [CrossRef]
  5. K. H. Tsang, H. W. Kui, K. P. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
    [CrossRef]
  6. F. Fominaya, T. Fournier, P. Gandit, J. Chaussy, “Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals,” Rev. Sci. Instrum. 68, 4191–4195 (1997).
    [CrossRef]
  7. D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994).
    [CrossRef]
  8. E. M. Forgan, S. Nedjat, “Heat capacity cryostat and novel methods of analysis for small specimens in the 1.5–10-K range,” Rev. Sci. Instrum. 51, 411–417 (1980).
    [CrossRef]
  9. S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999).
    [CrossRef]
  10. J. Morikawa, T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37, Part 2, L1485–L1487 (1998).
  11. R. T. Swimm, “Photoacoustic determination of thin film thermal properties,” Appl. Phys. Lett. 42, 955–957 (1983).
    [CrossRef]
  12. Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
    [CrossRef]
  13. C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
    [CrossRef]
  14. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
    [CrossRef]
  15. M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-induced local heating of multilayer,” Appl. Opt. 21, 1106–1114 (1982).
    [CrossRef] [PubMed]
  16. J. E. Stanworth, Physical Properties of Glass, (Clarendon, Oxford, U.K., 1950).
  17. P. Eriksson, J. Y. Anderson, G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6, 55–61 (1997).
    [CrossRef]
  18. X. Zhang, C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115–1120 (1995).
    [CrossRef]

2000

1999

S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999).
[CrossRef]

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

1998

J. Morikawa, T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37, Part 2, L1485–L1487 (1998).

1997

F. Fominaya, T. Fournier, P. Gandit, J. Chaussy, “Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals,” Rev. Sci. Instrum. 68, 4191–4195 (1997).
[CrossRef]

T. Maeda, “High-density recording mechanism of magneto-optical disks,” Jpn. J. Appl. Phys. 36, 504–513 (1997).
[CrossRef]

T. Abiko, A. Konishi, M. Kagawa, S. Igarashi, “Thermal response design for high recording density magneto-optical media,” Jpn. J. Appl. Phys. 36, 410–413 (1997).
[CrossRef]

P. Eriksson, J. Y. Anderson, G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6, 55–61 (1997).
[CrossRef]

1995

X. Zhang, C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115–1120 (1995).
[CrossRef]

1994

D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994).
[CrossRef]

1993

K. H. Tsang, H. W. Kui, K. P. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
[CrossRef]

1986

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

1983

R. T. Swimm, “Photoacoustic determination of thin film thermal properties,” Appl. Phys. Lett. 42, 955–957 (1983).
[CrossRef]

1982

1980

E. M. Forgan, S. Nedjat, “Heat capacity cryostat and novel methods of analysis for small specimens in the 1.5–10-K range,” Rev. Sci. Instrum. 51, 411–417 (1980).
[CrossRef]

Abarra, E. N.

D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994).
[CrossRef]

Abiko, T.

T. Abiko, A. Konishi, M. Kagawa, S. Igarashi, “Thermal response design for high recording density magneto-optical media,” Jpn. J. Appl. Phys. 36, 410–413 (1997).
[CrossRef]

Allen, K.

D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994).
[CrossRef]

Anderson, J. Y.

P. Eriksson, J. Y. Anderson, G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6, 55–61 (1997).
[CrossRef]

Capinski, W. S.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Cardona, M.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Chaussy, J.

F. Fominaya, T. Fournier, P. Gandit, J. Chaussy, “Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals,” Rev. Sci. Instrum. 68, 4191–4195 (1997).
[CrossRef]

Chik, K. P.

K. H. Tsang, H. W. Kui, K. P. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
[CrossRef]

Connell, G. A. N.

Denlinger, D. W.

D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994).
[CrossRef]

Eesley, G. L.

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

Eriksson, P.

P. Eriksson, J. Y. Anderson, G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6, 55–61 (1997).
[CrossRef]

Fominaya, F.

F. Fominaya, T. Fournier, P. Gandit, J. Chaussy, “Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals,” Rev. Sci. Instrum. 68, 4191–4195 (1997).
[CrossRef]

Forgan, E. M.

E. M. Forgan, S. Nedjat, “Heat capacity cryostat and novel methods of analysis for small specimens in the 1.5–10-K range,” Rev. Sci. Instrum. 51, 411–417 (1980).
[CrossRef]

Fournier, T.

F. Fominaya, T. Fournier, P. Gandit, J. Chaussy, “Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals,” Rev. Sci. Instrum. 68, 4191–4195 (1997).
[CrossRef]

Gandit, P.

F. Fominaya, T. Fournier, P. Gandit, J. Chaussy, “Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals,” Rev. Sci. Instrum. 68, 4191–4195 (1997).
[CrossRef]

Goodman, J. W.

Grigoropoulos, C. P.

X. Zhang, C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115–1120 (1995).
[CrossRef]

Hashimoto, T.

J. Morikawa, T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37, Part 2, L1485–L1487 (1998).

Hellman, F.

D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994).
[CrossRef]

Igarashi, S.

T. Abiko, A. Konishi, M. Kagawa, S. Igarashi, “Thermal response design for high recording density magneto-optical media,” Jpn. J. Appl. Phys. 36, 410–413 (1997).
[CrossRef]

Indermuehle, S. W.

S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999).
[CrossRef]

Kagawa, M.

T. Abiko, A. Konishi, M. Kagawa, S. Igarashi, “Thermal response design for high recording density magneto-optical media,” Jpn. J. Appl. Phys. 36, 410–413 (1997).
[CrossRef]

Katzer, D. S.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Konishi, A.

T. Abiko, A. Konishi, M. Kagawa, S. Igarashi, “Thermal response design for high recording density magneto-optical media,” Jpn. J. Appl. Phys. 36, 410–413 (1997).
[CrossRef]

Kozlowski, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Kui, H. W.

K. H. Tsang, H. W. Kui, K. P. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
[CrossRef]

Kuo, P. K.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Lu, Y. S.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Maeda, T.

T. Maeda, “High-density recording mechanism of magneto-optical disks,” Jpn. J. Appl. Phys. 36, 504–513 (1997).
[CrossRef]

Mansuripur, M.

Maris, H. J.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Messer, M. T.

D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994).
[CrossRef]

Morikawa, J.

J. Morikawa, T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37, Part 2, L1485–L1487 (1998).

Nedjat, S.

E. M. Forgan, S. Nedjat, “Heat capacity cryostat and novel methods of analysis for small specimens in the 1.5–10-K range,” Rev. Sci. Instrum. 51, 411–417 (1980).
[CrossRef]

Paddock, C. A.

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

Peng, C.

Peterson, R. B.

S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999).
[CrossRef]

Ploog, K.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Rooney, P. W.

D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994).
[CrossRef]

Ruf, T.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Stanworth, J. E.

J. E. Stanworth, Physical Properties of Glass, (Clarendon, Oxford, U.K., 1950).

Stemme, G.

P. Eriksson, J. Y. Anderson, G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6, 55–61 (1997).
[CrossRef]

Stolz, C.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Swimm, R. T.

R. T. Swimm, “Photoacoustic determination of thin film thermal properties,” Appl. Phys. Lett. 42, 955–957 (1983).
[CrossRef]

Thomsen, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Tsang, K. H.

K. H. Tsang, H. W. Kui, K. P. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
[CrossRef]

Watson, S. K.

D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994).
[CrossRef]

Wu, Z. L.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Xun, X.

Zhang, X.

X. Zhang, C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115–1120 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. T. Swimm, “Photoacoustic determination of thin film thermal properties,” Appl. Phys. Lett. 42, 955–957 (1983).
[CrossRef]

J. Appl. Phys.

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

K. H. Tsang, H. W. Kui, K. P. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
[CrossRef]

J. Microelectromech. Syst.

P. Eriksson, J. Y. Anderson, G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6, 55–61 (1997).
[CrossRef]

Jpn. J. Appl. Phys.

T. Maeda, “High-density recording mechanism of magneto-optical disks,” Jpn. J. Appl. Phys. 36, 504–513 (1997).
[CrossRef]

T. Abiko, A. Konishi, M. Kagawa, S. Igarashi, “Thermal response design for high recording density magneto-optical media,” Jpn. J. Appl. Phys. 36, 410–413 (1997).
[CrossRef]

J. Morikawa, T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37, Part 2, L1485–L1487 (1998).

Phys. Rev. B

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Rev. Sci. Instrum.

F. Fominaya, T. Fournier, P. Gandit, J. Chaussy, “Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals,” Rev. Sci. Instrum. 68, 4191–4195 (1997).
[CrossRef]

D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994).
[CrossRef]

E. M. Forgan, S. Nedjat, “Heat capacity cryostat and novel methods of analysis for small specimens in the 1.5–10-K range,” Rev. Sci. Instrum. 51, 411–417 (1980).
[CrossRef]

X. Zhang, C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115–1120 (1995).
[CrossRef]

Trans. ASME

S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999).
[CrossRef]

Other

M. Mansuripur, The Physical Principles of Magneto-Optical Recording (Cambridge U. Press, London, 1995).
[CrossRef]

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

J. E. Stanworth, Physical Properties of Glass, (Clarendon, Oxford, U.K., 1950).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of the static tester used in our experiments. A magnet is placed beneath the sample to supply as much as ±3 kOe of the magnetic field.

Fig. 2
Fig. 2

Experimental data of (a) ΔS and (b) dΔS/dP when a laser beam in a cw mode is focused on sample S1 at various NAs. The inflection points (local maxima) of the curves in (b) indicate the critical power P C at which the maximum temperature in the MO layer reaches T C .

Fig. 3
Fig. 3

Variations of differential signal ΔS as a function of time during the irradiation of sample S6 by a focused beam through a 0.6-NA objective lens at several power levels. Also plotted is the shape of the laser pulse. At any time point the magnitude of ΔS first increases with power, then decreases when the maximum temperature in the MO layer is more than the Curie temperature T C .

Fig. 4
Fig. 4

Variations of signal (a) ΔS and (b) dΔS/dP as a function of laser pulse power P at several time points during the irradiation of sample S6. (a) ΔS curves fitted by a polynomial to the seventh order. (b) Derivatives of these fitted polynomial curves. The local maxima indicate P C at different irradiation times.

Fig. 5
Fig. 5

Dependence of K SiN on K Glass at NAs of 0.6, 0.4, and 0.25 for sample S1. In the simulation T C T a = 245 °C is used for all NAs. The values of P C can be found in Table 3.

Fig. 6
Fig. 6

Variation of temperature ΔT/ T of samples (a) S1 and (b) S3 as a function of laser irradiation time when C Glass, C SiN, and C TbFeCo are varied by 10% from their bulk values. T is the maximum temperature computed at the center of the hot spot in the TbFeCo layer of each sample.

Fig. 7
Fig. 7

Variation of temperature ΔT/ T of samples (a) S2 and (b) S4 as a function of laser irradiation time when C Glass, C SiN, and C TbFeCo are varied by 10% from their bulk values.

Fig. 8
Fig. 8

Plot of C SiN versus C TbFeCo based on the experimental data from samples S1–S4.

Fig. 9
Fig. 9

Variation of temperature ΔT/ T of samples (a) S5 and (b) S6 as a function of laser irradiation time when C Glass, C SiN, C TbFeCo, and C Al are varied by 10% from their bulk values.

Fig. 10
Fig. 10

Plot of C SiN versus C Al based on experimental data from sample S5 and S6.

Tables (6)

Tables Icon

Table 1 Multilayer Structure of the Samples

Tables Icon

Table 2 Refractive Indices at 680 nm

Tables Icon

Table 3 Measured Value of the Radius of 1/e Intensity of a Focused Spot at the Focal Plane of the Objective Lens at λ = 643 nm

Tables Icon

Table 4 Measured Pc in Milliwatts for All Samples

Tables Icon

Table 5 Estimated Values of Thermal Conductivity K Pairs Corresponding to the Measured P C Listed in Table 4

Tables Icon

Table 6 Estimated Values of the Thermal Conductivity K and Heat Capacity C for MO Recording Media

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C Tt=K2T+g,

Metrics