Abstract

Surface-relief transmissive diffractive elements were fabricated by embossing. The master was made by lithography with a self-developing photopolymer. The highly cross-linked structure exhibited by the polymer has made possible the direct replication by thermal embossing of polyethylene substrates. Fabricated elements are meant to work with mid-infrared radiation. The influence of some process variables, related to the performance of the diffractive elements, is analyzed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gani, M. Auslender, S. Hava, “Variable gratings for optical switching: rigorous electromagnetic simulation and design,” Opt. Eng. 38, 552–557 (1999).
    [Crossref]
  2. H. Lee, S. Kim, “Precision profile measurement of aspheric surfaces by improved Ronchi test,” Opt. Eng. 38, 1041–1047 (1999).
    [Crossref]
  3. D. J. Schertler, N. George, “Uniform scattering patterns from grating-diffuser cascades for display applications,” Appl. Opt. 38, 291–303 (1999).
    [Crossref]
  4. R. Staub, W. R. Tompkin, A. Schilling, “Gratings of constantly varying depth for visual security devices,” Opt. Eng. 38, 89–98 (1999).
    [Crossref]
  5. B. Zhao, A. Asundi, “Strain microscope with grating diffraction method,” Opt. Eng. 38, 170–174 (1999).
    [Crossref]
  6. G. S. Spagnolo, D. Ambrosini, “Diffractive optical element-based profilometer for surface inspection,” Opt. Eng. 40, 44–52 (2001).
    [Crossref]
  7. T. Werner, J. A. Cox, S. Swanson, M. Holz, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
    [Crossref]
  8. G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
    [Crossref]
  9. E. Hasman, N. Davidson, A. A. Friesem, “Efficient multilevel phase holograms for CO2 lasers,” Opt. Lett. 16, 423–425 (1991).
    [Crossref] [PubMed]
  10. M. C. Hutley, R. F. Stevens, S. J. Wilson, “Manufacture of blazed zone plates in germanium for use in the 10-µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
    [Crossref]
  11. G. Bradburn, “Design and manufacture of high quality plastic infrared fresnel lenses,” in Infrared Technology and Applications, L. R. Baker, A. Masson, eds., Proc. SPIE590, 87–92 (1985).
    [Crossref]
  12. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref] [PubMed]
  13. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961–969 (1990).
    [Crossref]
  14. J. W. Goodman, A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Dev. 14, 478–484 (1970).
    [Crossref]
  15. D. J. Lougnot, C. Turck, C. Leroy-Garel, “New holographic recording materials based on dual-cure photopolymer systems,” in Photopolymer Device Physics, Chemistry and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 165–171 (1998).
    [Crossref]
  16. F. Erismann, “Design of a plastic aspheric Fresnel lens with a spherical shape,” Opt. Eng. 36, 988–991 (1997).
    [Crossref]
  17. S. Calixto, M. Ornelas-Rodriguez, “Mid-infrared microlenses fabricated by the melting method,” Opt. Lett. 24, 1212–1214 (1999).
    [Crossref]
  18. M. Ornelas-Rodriguez, S. Calixto, “Direct laser writing of mid-infrared microelements on polyethylene material,” Opt. Eng. 40, 921–925 (2001).
    [Crossref]
  19. C. Croutxé-Barghorn, D. J. Lougnot, “Interdependence of volume shrinkage, spatial frequency and mass transfer in relief gratings fabricated with self-processing photopolymers,” in Photopolymer Device Physics, Chemistry and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 208–215 (1998).
    [Crossref]

2001 (2)

G. S. Spagnolo, D. Ambrosini, “Diffractive optical element-based profilometer for surface inspection,” Opt. Eng. 40, 44–52 (2001).
[Crossref]

M. Ornelas-Rodriguez, S. Calixto, “Direct laser writing of mid-infrared microelements on polyethylene material,” Opt. Eng. 40, 921–925 (2001).
[Crossref]

1999 (6)

S. Calixto, M. Ornelas-Rodriguez, “Mid-infrared microlenses fabricated by the melting method,” Opt. Lett. 24, 1212–1214 (1999).
[Crossref]

D. Gani, M. Auslender, S. Hava, “Variable gratings for optical switching: rigorous electromagnetic simulation and design,” Opt. Eng. 38, 552–557 (1999).
[Crossref]

H. Lee, S. Kim, “Precision profile measurement of aspheric surfaces by improved Ronchi test,” Opt. Eng. 38, 1041–1047 (1999).
[Crossref]

D. J. Schertler, N. George, “Uniform scattering patterns from grating-diffuser cascades for display applications,” Appl. Opt. 38, 291–303 (1999).
[Crossref]

R. Staub, W. R. Tompkin, A. Schilling, “Gratings of constantly varying depth for visual security devices,” Opt. Eng. 38, 89–98 (1999).
[Crossref]

B. Zhao, A. Asundi, “Strain microscope with grating diffraction method,” Opt. Eng. 38, 170–174 (1999).
[Crossref]

1997 (1)

F. Erismann, “Design of a plastic aspheric Fresnel lens with a spherical shape,” Opt. Eng. 36, 988–991 (1997).
[Crossref]

1991 (2)

E. Hasman, N. Davidson, A. A. Friesem, “Efficient multilevel phase holograms for CO2 lasers,” Opt. Lett. 16, 423–425 (1991).
[Crossref] [PubMed]

M. C. Hutley, R. F. Stevens, S. J. Wilson, “Manufacture of blazed zone plates in germanium for use in the 10-µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
[Crossref]

1990 (1)

1989 (1)

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[Crossref]

1982 (1)

1970 (1)

J. W. Goodman, A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Dev. 14, 478–484 (1970).
[Crossref]

Ambrosini, D.

G. S. Spagnolo, D. Ambrosini, “Diffractive optical element-based profilometer for surface inspection,” Opt. Eng. 40, 44–52 (2001).
[Crossref]

Asundi, A.

B. Zhao, A. Asundi, “Strain microscope with grating diffraction method,” Opt. Eng. 38, 170–174 (1999).
[Crossref]

Auslender, M.

D. Gani, M. Auslender, S. Hava, “Variable gratings for optical switching: rigorous electromagnetic simulation and design,” Opt. Eng. 38, 552–557 (1999).
[Crossref]

Bradburn, G.

G. Bradburn, “Design and manufacture of high quality plastic infrared fresnel lenses,” in Infrared Technology and Applications, L. R. Baker, A. Masson, eds., Proc. SPIE590, 87–92 (1985).
[Crossref]

Calixto, S.

M. Ornelas-Rodriguez, S. Calixto, “Direct laser writing of mid-infrared microelements on polyethylene material,” Opt. Eng. 40, 921–925 (2001).
[Crossref]

S. Calixto, M. Ornelas-Rodriguez, “Mid-infrared microlenses fabricated by the melting method,” Opt. Lett. 24, 1212–1214 (1999).
[Crossref]

Cox, J. A.

T. Werner, J. A. Cox, S. Swanson, M. Holz, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
[Crossref]

Croutxé-Barghorn, C.

C. Croutxé-Barghorn, D. J. Lougnot, “Interdependence of volume shrinkage, spatial frequency and mass transfer in relief gratings fabricated with self-processing photopolymers,” in Photopolymer Device Physics, Chemistry and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 208–215 (1998).
[Crossref]

Davidson, N.

Erismann, F.

F. Erismann, “Design of a plastic aspheric Fresnel lens with a spherical shape,” Opt. Eng. 36, 988–991 (1997).
[Crossref]

Fienup, J. R.

Friesem, A. A.

Gani, D.

D. Gani, M. Auslender, S. Hava, “Variable gratings for optical switching: rigorous electromagnetic simulation and design,” Opt. Eng. 38, 552–557 (1999).
[Crossref]

George, N.

Goodman, J. W.

J. W. Goodman, A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Dev. 14, 478–484 (1970).
[Crossref]

Hasman, E.

Hava, S.

D. Gani, M. Auslender, S. Hava, “Variable gratings for optical switching: rigorous electromagnetic simulation and design,” Opt. Eng. 38, 552–557 (1999).
[Crossref]

Holz, M.

T. Werner, J. A. Cox, S. Swanson, M. Holz, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
[Crossref]

Hutley, M. C.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “Manufacture of blazed zone plates in germanium for use in the 10-µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
[Crossref]

Kim, S.

H. Lee, S. Kim, “Precision profile measurement of aspheric surfaces by improved Ronchi test,” Opt. Eng. 38, 1041–1047 (1999).
[Crossref]

Lee, H.

H. Lee, S. Kim, “Precision profile measurement of aspheric surfaces by improved Ronchi test,” Opt. Eng. 38, 1041–1047 (1999).
[Crossref]

Leroy-Garel, C.

D. J. Lougnot, C. Turck, C. Leroy-Garel, “New holographic recording materials based on dual-cure photopolymer systems,” in Photopolymer Device Physics, Chemistry and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 165–171 (1998).
[Crossref]

Lougnot, D. J.

C. Croutxé-Barghorn, D. J. Lougnot, “Interdependence of volume shrinkage, spatial frequency and mass transfer in relief gratings fabricated with self-processing photopolymers,” in Photopolymer Device Physics, Chemistry and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 208–215 (1998).
[Crossref]

D. J. Lougnot, C. Turck, C. Leroy-Garel, “New holographic recording materials based on dual-cure photopolymer systems,” in Photopolymer Device Physics, Chemistry and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 165–171 (1998).
[Crossref]

Ornelas-Rodriguez, M.

M. Ornelas-Rodriguez, S. Calixto, “Direct laser writing of mid-infrared microelements on polyethylene material,” Opt. Eng. 40, 921–925 (2001).
[Crossref]

S. Calixto, M. Ornelas-Rodriguez, “Mid-infrared microlenses fabricated by the melting method,” Opt. Lett. 24, 1212–1214 (1999).
[Crossref]

Schertler, D. J.

Schilling, A.

R. Staub, W. R. Tompkin, A. Schilling, “Gratings of constantly varying depth for visual security devices,” Opt. Eng. 38, 89–98 (1999).
[Crossref]

Silvestri, A. M.

J. W. Goodman, A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Dev. 14, 478–484 (1970).
[Crossref]

Spagnolo, G. S.

G. S. Spagnolo, D. Ambrosini, “Diffractive optical element-based profilometer for surface inspection,” Opt. Eng. 40, 44–52 (2001).
[Crossref]

Staub, R.

R. Staub, W. R. Tompkin, A. Schilling, “Gratings of constantly varying depth for visual security devices,” Opt. Eng. 38, 89–98 (1999).
[Crossref]

Stevens, R. F.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “Manufacture of blazed zone plates in germanium for use in the 10-µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
[Crossref]

Swanson, G. J.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[Crossref]

Swanson, S.

T. Werner, J. A. Cox, S. Swanson, M. Holz, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
[Crossref]

Tompkin, W. R.

R. Staub, W. R. Tompkin, A. Schilling, “Gratings of constantly varying depth for visual security devices,” Opt. Eng. 38, 89–98 (1999).
[Crossref]

Turck, C.

D. J. Lougnot, C. Turck, C. Leroy-Garel, “New holographic recording materials based on dual-cure photopolymer systems,” in Photopolymer Device Physics, Chemistry and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 165–171 (1998).
[Crossref]

Veldkamp, W. B.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[Crossref]

Werner, T.

T. Werner, J. A. Cox, S. Swanson, M. Holz, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
[Crossref]

Wilson, S. J.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “Manufacture of blazed zone plates in germanium for use in the 10-µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
[Crossref]

Wyrowski, F.

Zhao, B.

B. Zhao, A. Asundi, “Strain microscope with grating diffraction method,” Opt. Eng. 38, 170–174 (1999).
[Crossref]

Appl. Opt. (2)

IBM J. Res. Dev. (1)

J. W. Goodman, A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Dev. 14, 478–484 (1970).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (9)

F. Erismann, “Design of a plastic aspheric Fresnel lens with a spherical shape,” Opt. Eng. 36, 988–991 (1997).
[Crossref]

M. Ornelas-Rodriguez, S. Calixto, “Direct laser writing of mid-infrared microelements on polyethylene material,” Opt. Eng. 40, 921–925 (2001).
[Crossref]

R. Staub, W. R. Tompkin, A. Schilling, “Gratings of constantly varying depth for visual security devices,” Opt. Eng. 38, 89–98 (1999).
[Crossref]

B. Zhao, A. Asundi, “Strain microscope with grating diffraction method,” Opt. Eng. 38, 170–174 (1999).
[Crossref]

G. S. Spagnolo, D. Ambrosini, “Diffractive optical element-based profilometer for surface inspection,” Opt. Eng. 40, 44–52 (2001).
[Crossref]

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[Crossref]

D. Gani, M. Auslender, S. Hava, “Variable gratings for optical switching: rigorous electromagnetic simulation and design,” Opt. Eng. 38, 552–557 (1999).
[Crossref]

H. Lee, S. Kim, “Precision profile measurement of aspheric surfaces by improved Ronchi test,” Opt. Eng. 38, 1041–1047 (1999).
[Crossref]

M. C. Hutley, R. F. Stevens, S. J. Wilson, “Manufacture of blazed zone plates in germanium for use in the 10-µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
[Crossref]

Opt. Lett. (2)

Other (4)

C. Croutxé-Barghorn, D. J. Lougnot, “Interdependence of volume shrinkage, spatial frequency and mass transfer in relief gratings fabricated with self-processing photopolymers,” in Photopolymer Device Physics, Chemistry and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 208–215 (1998).
[Crossref]

D. J. Lougnot, C. Turck, C. Leroy-Garel, “New holographic recording materials based on dual-cure photopolymer systems,” in Photopolymer Device Physics, Chemistry and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 165–171 (1998).
[Crossref]

G. Bradburn, “Design and manufacture of high quality plastic infrared fresnel lenses,” in Infrared Technology and Applications, L. R. Baker, A. Masson, eds., Proc. SPIE590, 87–92 (1985).
[Crossref]

T. Werner, J. A. Cox, S. Swanson, M. Holz, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Diffraction pattern desired to be generated in the far field by the hologram, (b) binary phase transmission function of the DOE, (c) normalized intensity distribution reconstructed by computer simulation.

Fig. 2
Fig. 2

Binary phase transmission function of a CGH that generates in the far field the image of a square object of (a) 32 × 32 pixels and (b) 64 × 64 pixels. In (a) the spatial frequency to be recorded is lower than in (b).

Fig. 3
Fig. 3

Transmittance and absorbance as a function of UV wavelengths for a 50-µm-thick photopolymer layer used in master fabrication.

Fig. 4
Fig. 4

Transmittance as a function of IR wavelengths for 0.4-mm-thick PE plates.

Fig. 5
Fig. 5

Schematic diagram for master fabrication.

Fig. 6
Fig. 6

SEM photograph of part of a diffraction grating produced by thermal embossing.

Fig. 7
Fig. 7

SEM view of a section of a binary CGH fabricated on PE.

Fig. 8
Fig. 8

Surface modulation as a function of spatial frequency for (a) 20- and (b) 50-µm-thick photopolymer layers.

Fig. 9
Fig. 9

Diffraction efficiency as a function of surface modulation for IR gratings produced by thermal embossing.

Fig. 10
Fig. 10

IR diffracted orders given by a fabricated grating as seen with a pyroelectric camera.

Fig. 11
Fig. 11

IR diffraction pattern given by a CGH in the far field. The pattern was recorded with a pyroelectric camera.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d=λ2Δn,

Metrics