Abstract

We analyze optical systems for creating phase-only operation of a liquid-crystal display (LCD). We introduce a new formalism in which any input or output polarization state can be described in terms of a linear combination of the eigenvectors of the LCD. We use a phasor analysis to examine the linear combination of the eigenvectors and show how improved performance can be obtained with a new configuration. We experimentally compare the intensity and phase operation for two configurations with the same spatial light modulator and show the improved performance with the new configuration.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Liu, J. A. Davis, R. A. Lilly, “Optical-data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635–637 (1985).
    [CrossRef] [PubMed]
  2. D. A. Gregory, “Real-time pattern recognition using a modified liquid crystal television in a coherent optical correlator,” Appl. Opt. 25, 467–469 (1986).
    [CrossRef] [PubMed]
  3. F. T. S. Yu, S. Jutamulia, X. L. Huang, “Experimental application of low-cost liquid crystal TV to white-light signal processing,” Appl. Opt. 25, 3324–3326 (1986).
    [CrossRef] [PubMed]
  4. J. Amako, T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533–L1535 (1990).
    [CrossRef]
  5. J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
    [CrossRef]
  6. J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587–589 (2001).
    [CrossRef]
  7. K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
    [CrossRef]
  8. C. Soutar, S. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
    [CrossRef]
  9. L. G. Neto, D. Roberge, Y. Sheng, “Programmable optical phase-mostly holograms with coupled-mode modulation liquid-crystal television,” Appl. Opt. 34, 1944–1950 (1995).
    [CrossRef] [PubMed]
  10. J. J. Pezzaniti, R. A. Chipman, “Phase-only modulation of a twisted nematic liquid crystal TV by use of eigenpolarization states,” Opt. Lett. 18, 1567–1569 (1993).
    [CrossRef]
  11. J. A. Davis, I. Moreno, P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998).
    [CrossRef]
  12. I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted nematic liquid crystal displays,” Opt. Eng. 37, 3848–3052 (1998).
  13. A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001).
    [CrossRef]
  14. C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
    [CrossRef]
  15. J. A. Davis, D. B. Allison, K. G. D’Nelly, I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705–709 (1999).
    [CrossRef]
  16. J. A. Davis, P. Tsai, K. G. D’Nelly, I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 929–932 (1999).
    [CrossRef]
  17. M. Yamauchi, A. Marquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 8, 1–6 (2000).
    [CrossRef]

2001 (2)

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587–589 (2001).
[CrossRef]

2000 (2)

J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
[CrossRef]

M. Yamauchi, A. Marquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 8, 1–6 (2000).
[CrossRef]

1999 (2)

J. A. Davis, D. B. Allison, K. G. D’Nelly, I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705–709 (1999).
[CrossRef]

J. A. Davis, P. Tsai, K. G. D’Nelly, I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 929–932 (1999).
[CrossRef]

1998 (2)

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted nematic liquid crystal displays,” Opt. Eng. 37, 3848–3052 (1998).

J. A. Davis, I. Moreno, P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998).
[CrossRef]

1995 (1)

1994 (2)

C. Soutar, S. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

1993 (1)

1990 (2)

J. Amako, T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533–L1535 (1990).
[CrossRef]

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

1986 (2)

1985 (1)

Adachi, J.

Allison, D. B.

J. A. Davis, D. B. Allison, K. G. D’Nelly, I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705–709 (1999).
[CrossRef]

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted nematic liquid crystal displays,” Opt. Eng. 37, 3848–3052 (1998).

Amako, J.

J. Amako, T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533–L1535 (1990).
[CrossRef]

Campos, J.

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

Chipman, R. A.

Cottrell, D. M.

D’Nelly, K. G.

J. A. Davis, P. Tsai, K. G. D’Nelly, I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 929–932 (1999).
[CrossRef]

J. A. Davis, D. B. Allison, K. G. D’Nelly, I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705–709 (1999).
[CrossRef]

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted nematic liquid crystal displays,” Opt. Eng. 37, 3848–3052 (1998).

Davis, J. A.

J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587–589 (2001).
[CrossRef]

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
[CrossRef]

M. Yamauchi, A. Marquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 8, 1–6 (2000).
[CrossRef]

J. A. Davis, D. B. Allison, K. G. D’Nelly, I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705–709 (1999).
[CrossRef]

J. A. Davis, P. Tsai, K. G. D’Nelly, I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 929–932 (1999).
[CrossRef]

J. A. Davis, I. Moreno, P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998).
[CrossRef]

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted nematic liquid crystal displays,” Opt. Eng. 37, 3848–3052 (1998).

H. K. Liu, J. A. Davis, R. A. Lilly, “Optical-data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635–637 (1985).
[CrossRef] [PubMed]

Fernandez-Pousa, C. R.

Franich, D. J.

M. Yamauchi, A. Marquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 8, 1–6 (2000).
[CrossRef]

Gregory, D. A.

Huang, X. L.

Iemmi, C.

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

Jutamulia, S.

Knopp, J.

C. Soutar, S. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

Lilly, R. A.

Liu, H. K.

Lu, K.

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

Marquez, A.

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

M. Yamauchi, A. Marquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 8, 1–6 (2000).
[CrossRef]

McNamara, D. E.

Monroe, S.

C. Soutar, S. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

Moreno, I.

J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587–589 (2001).
[CrossRef]

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

J. A. Davis, P. Tsai, K. G. D’Nelly, I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 929–932 (1999).
[CrossRef]

J. A. Davis, D. B. Allison, K. G. D’Nelly, I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705–709 (1999).
[CrossRef]

J. A. Davis, I. Moreno, P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998).
[CrossRef]

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted nematic liquid crystal displays,” Opt. Eng. 37, 3848–3052 (1998).

Neto, L. G.

Pezzaniti, J. J.

Roberge, D.

Saleh, B. E. A.

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

Sheng, Y.

Sonehara, T.

J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
[CrossRef]

J. Amako, T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533–L1535 (1990).
[CrossRef]

Soutar, C.

C. Soutar, S. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

Tsai, P.

J. A. Davis, P. Tsai, K. G. D’Nelly, I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 929–932 (1999).
[CrossRef]

J. A. Davis, I. Moreno, P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998).
[CrossRef]

Yamauchi, M.

M. Yamauchi, A. Marquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 8, 1–6 (2000).
[CrossRef]

Yu, F. T. S.

Yzuel, M. J.

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

Appl. Opt. (5)

Jpn. J. Appl. Phys. (1)

J. Amako, T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533–L1535 (1990).
[CrossRef]

Opt. Commun. (1)

M. Yamauchi, A. Marquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 8, 1–6 (2000).
[CrossRef]

Opt. Eng. (7)

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

C. Soutar, S. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted nematic liquid crystal displays,” Opt. Eng. 37, 3848–3052 (1998).

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

J. A. Davis, D. B. Allison, K. G. D’Nelly, I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705–709 (1999).
[CrossRef]

J. A. Davis, P. Tsai, K. G. D’Nelly, I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 929–932 (1999).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental configuration showing the orientations for the optical components.

Fig. 2
Fig. 2

Magnitudes of the vectors t + g + and t - g - versus birefringence (a) for classic configuration and (b) for optimal configuration.

Fig. 3
Fig. 3

Phasor diagram for the vectors t + g + and t - g - for the classic configuration (a) at zero birefringence and (b) at high birefringence.

Fig. 4
Fig. 4

Phasor diagram for the vectors t + g + and t - g - for the optimal configuration (a) at zero birefringence and (b) at high birefringence.

Fig. 5
Fig. 5

Experimental intensity versus gray level (a) for classic configuration and (b) for optimal configuration.

Fig. 6
Fig. 6

Phase versus gray level (a) for classic configuration and (b) for optimal configuration.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

MLCD=exp-iβR-αMα, β.
Rθ=cos θsin θ-sin θcos θ,
Mα, β=cos γ-iβ sin γγα sin γγ-α sin γγcos γ+iβ sin γγ.
Mα, βEμ±=μ±Eμ±.
μ±=exp±iγ.
ϕ±=β-±γ.
ET=P0Rξ2WΓ2, θ2RαR-αMα, β ×WΓ1, θ1R-ξ1Eo.
EIN= WΓ1, θ1R-ξ1Eo=g+Eμ++g-Eμ-.
g+=Eμ+ · EIN
g-=Eμ- · EIN
ELCD=g+Eμ+ expiϕ++g-Eμ- expiϕ-.
P0Rξ2WΓ2, θ2Eμ+=t+i,
P0Rξ2WΓ2, θ2Eμ-=t-i.
t+=EOUT · Eμ+,
t-=EOUT · Eμ-,
ET=t+g+ expiϕ++t-g- expiϕ-.
t+g+=|t+g+| expiΦ+, t-g-=|t-g-| expiΦ-.
ET=|ET| expiΦT=|t+g+| expiϕ++iΦ++|t-g-| expiϕ-+iΦ-.

Metrics