Abstract

Diffraction phase gratings are formed on samples of crystalline silver halide by exposing them through a mask to 353-nm laser light followed by chemical processing. The exposure and photographic development processes generate metallic silver strips on the sample surface. The fixing process removes the silver strips, leaving grooves on the surface as deep as 1.1 µm. Gratings of 100-µm period are thus formed. The groove depth is determined by optical methods and is confirmed by atomic force microscopy. This method can be used to form diffractive optical elements on IR transmitting fibers and waveguides as well as on crystals.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
    [CrossRef]
  2. I. M. Firth, Holography and Computer Generated Holograms (Mills & Boon, London, 1972).
  3. M. Francon, Holography (Academic, New York, 1974).
  4. R. Hilsch, R. Pohl, “Zur Photochemie der Alkali- und Silberhalogenidkristalle,” Z. Phys. 64, 606–622 (1930).
    [CrossRef]
  5. F. Seitz, “Speculations on the properties of the silver halide crystals,” Rev. Mod. Phys. 23, 328–352 (1951).
    [CrossRef]
  6. J. A. Brandão Faria, “A transmission phase grating analysis,” Microwave Opt. Tech. Lett. 4, 224–227 (1991).
    [CrossRef]
  7. M. Ueta, H. Kanzaki, K. Kobayshi, Y. Yoyozawa, E. Hanamyra, Exitonic Processes in Solids, Springer Series in Solid State Sciences, Vol. 60 (Springer-Verlag, Berlin, 1986).
    [CrossRef]
  8. A. L. Laskar, “Diffusion and defects in silver halides,” in Diffusion in Solids, A. L. Laskar, C. P. Tiwari, E. C. Subba Rao, R. Krishman, eds. (Trans-Tech, Switzerland, 1984), pp. 59–82.
  9. F. Moser, F. Urbach, “Optical absorption of pure silver halides,” Phys. Rev. 102, 1519–1523 (1956).
    [CrossRef]
  10. I. Paiss, D. Bunimovich, A. Katzir, ”Evanescent wave infrared spectroscopy of solid materials using deformable silver halide optical fibers,” Appl. Opt. 32, 5867–5871 (1993).
    [CrossRef] [PubMed]

1993 (1)

1991 (1)

J. A. Brandão Faria, “A transmission phase grating analysis,” Microwave Opt. Tech. Lett. 4, 224–227 (1991).
[CrossRef]

1956 (1)

F. Moser, F. Urbach, “Optical absorption of pure silver halides,” Phys. Rev. 102, 1519–1523 (1956).
[CrossRef]

1951 (1)

F. Seitz, “Speculations on the properties of the silver halide crystals,” Rev. Mod. Phys. 23, 328–352 (1951).
[CrossRef]

1930 (1)

R. Hilsch, R. Pohl, “Zur Photochemie der Alkali- und Silberhalogenidkristalle,” Z. Phys. 64, 606–622 (1930).
[CrossRef]

Barkay, N.

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
[CrossRef]

Brandão Faria, J. A.

J. A. Brandão Faria, “A transmission phase grating analysis,” Microwave Opt. Tech. Lett. 4, 224–227 (1991).
[CrossRef]

Bunimovich, D.

Firth, I. M.

I. M. Firth, Holography and Computer Generated Holograms (Mills & Boon, London, 1972).

Francon, M.

M. Francon, Holography (Academic, New York, 1974).

Hanamyra, E.

M. Ueta, H. Kanzaki, K. Kobayshi, Y. Yoyozawa, E. Hanamyra, Exitonic Processes in Solids, Springer Series in Solid State Sciences, Vol. 60 (Springer-Verlag, Berlin, 1986).
[CrossRef]

Hilsch, R.

R. Hilsch, R. Pohl, “Zur Photochemie der Alkali- und Silberhalogenidkristalle,” Z. Phys. 64, 606–622 (1930).
[CrossRef]

Kanzaki, H.

M. Ueta, H. Kanzaki, K. Kobayshi, Y. Yoyozawa, E. Hanamyra, Exitonic Processes in Solids, Springer Series in Solid State Sciences, Vol. 60 (Springer-Verlag, Berlin, 1986).
[CrossRef]

Katzir, A.

I. Paiss, D. Bunimovich, A. Katzir, ”Evanescent wave infrared spectroscopy of solid materials using deformable silver halide optical fibers,” Appl. Opt. 32, 5867–5871 (1993).
[CrossRef] [PubMed]

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
[CrossRef]

Kobayshi, K.

M. Ueta, H. Kanzaki, K. Kobayshi, Y. Yoyozawa, E. Hanamyra, Exitonic Processes in Solids, Springer Series in Solid State Sciences, Vol. 60 (Springer-Verlag, Berlin, 1986).
[CrossRef]

Laskar, A. L.

A. L. Laskar, “Diffusion and defects in silver halides,” in Diffusion in Solids, A. L. Laskar, C. P. Tiwari, E. C. Subba Rao, R. Krishman, eds. (Trans-Tech, Switzerland, 1984), pp. 59–82.

Levite, A.

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
[CrossRef]

Margalit, E.

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
[CrossRef]

Moser, F.

F. Moser, F. Urbach, “Optical absorption of pure silver halides,” Phys. Rev. 102, 1519–1523 (1956).
[CrossRef]

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
[CrossRef]

Paiss, I.

I. Paiss, D. Bunimovich, A. Katzir, ”Evanescent wave infrared spectroscopy of solid materials using deformable silver halide optical fibers,” Appl. Opt. 32, 5867–5871 (1993).
[CrossRef] [PubMed]

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
[CrossRef]

Pohl, R.

R. Hilsch, R. Pohl, “Zur Photochemie der Alkali- und Silberhalogenidkristalle,” Z. Phys. 64, 606–622 (1930).
[CrossRef]

Sa’ar, A.

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
[CrossRef]

Schnitzer, I.

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
[CrossRef]

Seitz, F.

F. Seitz, “Speculations on the properties of the silver halide crystals,” Rev. Mod. Phys. 23, 328–352 (1951).
[CrossRef]

Ueta, M.

M. Ueta, H. Kanzaki, K. Kobayshi, Y. Yoyozawa, E. Hanamyra, Exitonic Processes in Solids, Springer Series in Solid State Sciences, Vol. 60 (Springer-Verlag, Berlin, 1986).
[CrossRef]

Urbach, F.

F. Moser, F. Urbach, “Optical absorption of pure silver halides,” Phys. Rev. 102, 1519–1523 (1956).
[CrossRef]

Yoyozawa, Y.

M. Ueta, H. Kanzaki, K. Kobayshi, Y. Yoyozawa, E. Hanamyra, Exitonic Processes in Solids, Springer Series in Solid State Sciences, Vol. 60 (Springer-Verlag, Berlin, 1986).
[CrossRef]

Zur, A.

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
[CrossRef]

Appl. Opt. (1)

Microwave Opt. Tech. Lett. (1)

J. A. Brandão Faria, “A transmission phase grating analysis,” Microwave Opt. Tech. Lett. 4, 224–227 (1991).
[CrossRef]

Phys. Rev. (1)

F. Moser, F. Urbach, “Optical absorption of pure silver halides,” Phys. Rev. 102, 1519–1523 (1956).
[CrossRef]

Rev. Mod. Phys. (1)

F. Seitz, “Speculations on the properties of the silver halide crystals,” Rev. Mod. Phys. 23, 328–352 (1951).
[CrossRef]

Z. Phys. (1)

R. Hilsch, R. Pohl, “Zur Photochemie der Alkali- und Silberhalogenidkristalle,” Z. Phys. 64, 606–622 (1930).
[CrossRef]

Other (5)

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” in Infrared Fiber Optica II, J. A. Harrington, A. Katzir, eds., Proc. SPIE1228, 128–139 (1990).
[CrossRef]

I. M. Firth, Holography and Computer Generated Holograms (Mills & Boon, London, 1972).

M. Francon, Holography (Academic, New York, 1974).

M. Ueta, H. Kanzaki, K. Kobayshi, Y. Yoyozawa, E. Hanamyra, Exitonic Processes in Solids, Springer Series in Solid State Sciences, Vol. 60 (Springer-Verlag, Berlin, 1986).
[CrossRef]

A. L. Laskar, “Diffusion and defects in silver halides,” in Diffusion in Solids, A. L. Laskar, C. P. Tiwari, E. C. Subba Rao, R. Krishman, eds. (Trans-Tech, Switzerland, 1984), pp. 59–82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Profile of the precision Ronchi ruling target used in our experiments.

Fig. 2
Fig. 2

AFM imaging of the AgBr sample surface illuminated by 353-nm laser light through the Ronchi ruling target shown in Fig. 1.

Fig. 3
Fig. 3

Height profile along the A–A line in Fig. 2. The area between the arrows was illuminated by laser light.

Fig. 4
Fig. 4

Optical image of the AgBr crystal surface illuminated through the Ronchi ruling and treated by a developer.

Fig. 5
Fig. 5

AFM imaging of the AgBr sample surface illuminated through the Ronchi ruling and treated by a developer.

Fig. 6
Fig. 6

Height profile along the A–A line in Fig. 5.

Fig. 7
Fig. 7

AFM imaging of the AgBr sample surface after irradiating, developing, and fixing.

Fig. 8
Fig. 8

Height profile along the A–A line in Fig. 7.

Fig. 9
Fig. 9

Schematic transmission phase grating with periodic grooves.

Fig. 10
Fig. 10

Diffracted light intensity distribution as a function of the diffraction maximum number m for the AgBr0.6Cl0.4 sample: open and solid circles, experimental points for λ = 1.06 µm and λ = 1.33 µm, respectively; dashed and continuous lines, intensity distributions estimated with Eq. (1) for λ = 1.06 µm and λ = 1.33 µm, respectively.

Fig. 11
Fig. 11

Diffracted light intensity distribution as a function of the diffraction maximum number m for the AgBr sample: (a) m = 0–3 and (b) m = 3–5; open circles, solid circles, and open squares, experimental points for λ = 1.06 µm, λ = 1.33 µm, and λ = 10.6 µm, respectively; dashed, continuous, and dotted lines, intensity distributions estimated with Eq. (1) for λ = 1.06 µm, λ = 1.33 µm, and λ = 10.6 µm, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ix=I0 * cos2 θ * sin γ/2γ/2 * sin Nγsin γ2,
θ=θx=ξ+γx2, γx=πdxλz, ξ=2πtλn-nair=2πtλ Δn,
Im=0Im=π * m * cosξ222 * sinξ22,

Metrics