Abstract

A new methodology for the study of low-dimensional thin-film structures and a new technique to determine nanolayer thickness are considered. These are based on recording and processing the changes in an angular Fourier spectrum of a light beam reflected from a prism coupler to excite the guided mode in a thin-film structure when the incident light beam intensity is increased.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Persans, L. B. Lurio, J. Pant, H. Yukselici, G. Lian, T. M. Hayes, “Combining x-ray and optical spectroscopies in the study of dilute semiconductor nanoparticle composites,” J. Appl. Phys. 87, 3850–3857 (2000).
    [CrossRef]
  2. P. K. Tien, R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [CrossRef]
  3. S. Monneret, P. Huguet-Chantome, F. Flory, “Theory of prism-film coupler and thin film light guides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
    [CrossRef]
  4. H. Rigneault, F. Flory, S. Monneret, “Nonlinear totally reflecting prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films,” Appl. Opt. 34, 4358–4369 (1995).
    [CrossRef] [PubMed]
  5. V. P. Red’ko, A. A. Romanenko, A. B. Sotsky, A. V. Khomchenko, “A method for determining the complex mode propagation constants of optical waveguides,” Tech. Phys. Lett. 18 (4), 14–18 (1992).
  6. A. V. Khomchenko, “Waveguide spectroscopy of thin films,” Tech. Phys. Lett. 27, 271–274 (2001).
    [CrossRef]
  7. A. B. Sotsky, A. A. Romanenko, A. V. Khomchenko, I. U. Primak, “The analysis of distribution of the reflected beam intensity in the prism coupler excitation of dielectric waveguides,” J. Commun. Technol. Electron. 44, 640–647 (1999).
  8. A. B. Sotsky, A. V. Khomchenko, L. I. Sotskaya, “Measuring of optical parameters of third-nonlinear waveguides,” Tech. Phys. Lett. 20, 667–669 (1994).
  9. A. V. Khomchenko, “Structure and nonlinear optical properties of zinc selenide films,” Tech. Phys. 42, 1038–1041 (1997).
    [CrossRef]
  10. A. V. Khomchenko, “Nonlinear optical properties of thin films at a low light intensity,” Tech. Phys. 45, 1505–1508 (2000).
    [CrossRef]
  11. A. V. Khomchenko, “m-lines technique application for studying of optical nonlinearities in thin films at a low light intensity,” Opt. Commun. 201(4–6), 363–372 (2002).
    [CrossRef]

2002 (1)

A. V. Khomchenko, “m-lines technique application for studying of optical nonlinearities in thin films at a low light intensity,” Opt. Commun. 201(4–6), 363–372 (2002).
[CrossRef]

2001 (1)

A. V. Khomchenko, “Waveguide spectroscopy of thin films,” Tech. Phys. Lett. 27, 271–274 (2001).
[CrossRef]

2000 (3)

A. V. Khomchenko, “Nonlinear optical properties of thin films at a low light intensity,” Tech. Phys. 45, 1505–1508 (2000).
[CrossRef]

P. D. Persans, L. B. Lurio, J. Pant, H. Yukselici, G. Lian, T. M. Hayes, “Combining x-ray and optical spectroscopies in the study of dilute semiconductor nanoparticle composites,” J. Appl. Phys. 87, 3850–3857 (2000).
[CrossRef]

S. Monneret, P. Huguet-Chantome, F. Flory, “Theory of prism-film coupler and thin film light guides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
[CrossRef]

1999 (1)

A. B. Sotsky, A. A. Romanenko, A. V. Khomchenko, I. U. Primak, “The analysis of distribution of the reflected beam intensity in the prism coupler excitation of dielectric waveguides,” J. Commun. Technol. Electron. 44, 640–647 (1999).

1997 (1)

A. V. Khomchenko, “Structure and nonlinear optical properties of zinc selenide films,” Tech. Phys. 42, 1038–1041 (1997).
[CrossRef]

1995 (1)

1994 (1)

A. B. Sotsky, A. V. Khomchenko, L. I. Sotskaya, “Measuring of optical parameters of third-nonlinear waveguides,” Tech. Phys. Lett. 20, 667–669 (1994).

1992 (1)

V. P. Red’ko, A. A. Romanenko, A. B. Sotsky, A. V. Khomchenko, “A method for determining the complex mode propagation constants of optical waveguides,” Tech. Phys. Lett. 18 (4), 14–18 (1992).

1970 (1)

Flory, F.

S. Monneret, P. Huguet-Chantome, F. Flory, “Theory of prism-film coupler and thin film light guides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
[CrossRef]

H. Rigneault, F. Flory, S. Monneret, “Nonlinear totally reflecting prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films,” Appl. Opt. 34, 4358–4369 (1995).
[CrossRef] [PubMed]

Hayes, T. M.

P. D. Persans, L. B. Lurio, J. Pant, H. Yukselici, G. Lian, T. M. Hayes, “Combining x-ray and optical spectroscopies in the study of dilute semiconductor nanoparticle composites,” J. Appl. Phys. 87, 3850–3857 (2000).
[CrossRef]

Huguet-Chantome, P.

S. Monneret, P. Huguet-Chantome, F. Flory, “Theory of prism-film coupler and thin film light guides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
[CrossRef]

Khomchenko, A. V.

A. V. Khomchenko, “m-lines technique application for studying of optical nonlinearities in thin films at a low light intensity,” Opt. Commun. 201(4–6), 363–372 (2002).
[CrossRef]

A. V. Khomchenko, “Waveguide spectroscopy of thin films,” Tech. Phys. Lett. 27, 271–274 (2001).
[CrossRef]

A. V. Khomchenko, “Nonlinear optical properties of thin films at a low light intensity,” Tech. Phys. 45, 1505–1508 (2000).
[CrossRef]

A. B. Sotsky, A. A. Romanenko, A. V. Khomchenko, I. U. Primak, “The analysis of distribution of the reflected beam intensity in the prism coupler excitation of dielectric waveguides,” J. Commun. Technol. Electron. 44, 640–647 (1999).

A. V. Khomchenko, “Structure and nonlinear optical properties of zinc selenide films,” Tech. Phys. 42, 1038–1041 (1997).
[CrossRef]

A. B. Sotsky, A. V. Khomchenko, L. I. Sotskaya, “Measuring of optical parameters of third-nonlinear waveguides,” Tech. Phys. Lett. 20, 667–669 (1994).

V. P. Red’ko, A. A. Romanenko, A. B. Sotsky, A. V. Khomchenko, “A method for determining the complex mode propagation constants of optical waveguides,” Tech. Phys. Lett. 18 (4), 14–18 (1992).

Lian, G.

P. D. Persans, L. B. Lurio, J. Pant, H. Yukselici, G. Lian, T. M. Hayes, “Combining x-ray and optical spectroscopies in the study of dilute semiconductor nanoparticle composites,” J. Appl. Phys. 87, 3850–3857 (2000).
[CrossRef]

Lurio, L. B.

P. D. Persans, L. B. Lurio, J. Pant, H. Yukselici, G. Lian, T. M. Hayes, “Combining x-ray and optical spectroscopies in the study of dilute semiconductor nanoparticle composites,” J. Appl. Phys. 87, 3850–3857 (2000).
[CrossRef]

Monneret, S.

S. Monneret, P. Huguet-Chantome, F. Flory, “Theory of prism-film coupler and thin film light guides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
[CrossRef]

H. Rigneault, F. Flory, S. Monneret, “Nonlinear totally reflecting prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films,” Appl. Opt. 34, 4358–4369 (1995).
[CrossRef] [PubMed]

Pant, J.

P. D. Persans, L. B. Lurio, J. Pant, H. Yukselici, G. Lian, T. M. Hayes, “Combining x-ray and optical spectroscopies in the study of dilute semiconductor nanoparticle composites,” J. Appl. Phys. 87, 3850–3857 (2000).
[CrossRef]

Persans, P. D.

P. D. Persans, L. B. Lurio, J. Pant, H. Yukselici, G. Lian, T. M. Hayes, “Combining x-ray and optical spectroscopies in the study of dilute semiconductor nanoparticle composites,” J. Appl. Phys. 87, 3850–3857 (2000).
[CrossRef]

Primak, I. U.

A. B. Sotsky, A. A. Romanenko, A. V. Khomchenko, I. U. Primak, “The analysis of distribution of the reflected beam intensity in the prism coupler excitation of dielectric waveguides,” J. Commun. Technol. Electron. 44, 640–647 (1999).

Red’ko, V. P.

V. P. Red’ko, A. A. Romanenko, A. B. Sotsky, A. V. Khomchenko, “A method for determining the complex mode propagation constants of optical waveguides,” Tech. Phys. Lett. 18 (4), 14–18 (1992).

Rigneault, H.

Romanenko, A. A.

A. B. Sotsky, A. A. Romanenko, A. V. Khomchenko, I. U. Primak, “The analysis of distribution of the reflected beam intensity in the prism coupler excitation of dielectric waveguides,” J. Commun. Technol. Electron. 44, 640–647 (1999).

V. P. Red’ko, A. A. Romanenko, A. B. Sotsky, A. V. Khomchenko, “A method for determining the complex mode propagation constants of optical waveguides,” Tech. Phys. Lett. 18 (4), 14–18 (1992).

Sotskaya, L. I.

A. B. Sotsky, A. V. Khomchenko, L. I. Sotskaya, “Measuring of optical parameters of third-nonlinear waveguides,” Tech. Phys. Lett. 20, 667–669 (1994).

Sotsky, A. B.

A. B. Sotsky, A. A. Romanenko, A. V. Khomchenko, I. U. Primak, “The analysis of distribution of the reflected beam intensity in the prism coupler excitation of dielectric waveguides,” J. Commun. Technol. Electron. 44, 640–647 (1999).

A. B. Sotsky, A. V. Khomchenko, L. I. Sotskaya, “Measuring of optical parameters of third-nonlinear waveguides,” Tech. Phys. Lett. 20, 667–669 (1994).

V. P. Red’ko, A. A. Romanenko, A. B. Sotsky, A. V. Khomchenko, “A method for determining the complex mode propagation constants of optical waveguides,” Tech. Phys. Lett. 18 (4), 14–18 (1992).

Tien, P. K.

Ulrich, R.

Yukselici, H.

P. D. Persans, L. B. Lurio, J. Pant, H. Yukselici, G. Lian, T. M. Hayes, “Combining x-ray and optical spectroscopies in the study of dilute semiconductor nanoparticle composites,” J. Appl. Phys. 87, 3850–3857 (2000).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

P. D. Persans, L. B. Lurio, J. Pant, H. Yukselici, G. Lian, T. M. Hayes, “Combining x-ray and optical spectroscopies in the study of dilute semiconductor nanoparticle composites,” J. Appl. Phys. 87, 3850–3857 (2000).
[CrossRef]

J. Commun. Technol. Electron. (1)

A. B. Sotsky, A. A. Romanenko, A. V. Khomchenko, I. U. Primak, “The analysis of distribution of the reflected beam intensity in the prism coupler excitation of dielectric waveguides,” J. Commun. Technol. Electron. 44, 640–647 (1999).

J. Opt. A: Pure Appl. Opt. (1)

S. Monneret, P. Huguet-Chantome, F. Flory, “Theory of prism-film coupler and thin film light guides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

A. V. Khomchenko, “m-lines technique application for studying of optical nonlinearities in thin films at a low light intensity,” Opt. Commun. 201(4–6), 363–372 (2002).
[CrossRef]

Tech. Phys. (2)

A. V. Khomchenko, “Structure and nonlinear optical properties of zinc selenide films,” Tech. Phys. 42, 1038–1041 (1997).
[CrossRef]

A. V. Khomchenko, “Nonlinear optical properties of thin films at a low light intensity,” Tech. Phys. 45, 1505–1508 (2000).
[CrossRef]

Tech. Phys. Lett. (3)

A. B. Sotsky, A. V. Khomchenko, L. I. Sotskaya, “Measuring of optical parameters of third-nonlinear waveguides,” Tech. Phys. Lett. 20, 667–669 (1994).

V. P. Red’ko, A. A. Romanenko, A. B. Sotsky, A. V. Khomchenko, “A method for determining the complex mode propagation constants of optical waveguides,” Tech. Phys. Lett. 18 (4), 14–18 (1992).

A. V. Khomchenko, “Waveguide spectroscopy of thin films,” Tech. Phys. Lett. 27, 271–274 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Intensity dependencies of Δh′ for As2S3 film with a thickness equal to 1.5 µm (curve 1) and ZnSe films (thickness equal to approximately 0.24 µm) deposited at substrate temperatures of 180 °C (curve 2), 240 °C (curve 3), and 280 °C (curve 4). (b) Dependence of the light beam reflection coefficient on intensity for As2S3 film.

Fig. 2
Fig. 2

Changes in angular Fourier spectrum of the reflected light beam for ZnSe film at light intensity variations of (0.25, 0.5, 0.8, and 1.5 mW/cm2 for curves 1, 2, 3, and 4, respectively). The ZnSe film was deposited at the substrate temperature of 280 °C.

Fig. 3
Fig. 3

Variations of h n ′ as a function of incident light beam intensity for a multilayer structure that contained five (curve 1) and three (curve 2) lithium niobate layers, and three (curve 3) and one (curve 4) tin dioxide layer.

Tables (1)

Tables Icon

Table 1 Parameters of hn′(I) Dependencies and Thin-Film Properties

Metrics