Abstract

An optical system based on short-coherence digital holography suitable for three-dimensional (3D) microscopic investigations is described. The light source is a short-coherence laser, and the holograms are recorded on a CCD sensor. The interference (hologram) occurs only when the path lengths of the reference and the object beam are matched within the coherence length of the laser. The image of the part of the sample that matches the reference beam is reconstructed by numerical evaluation of the hologram. The advantages of the method are high numerical aperture (this means high spatial resolution), detection of the 3D shape, and a lensless imaging system. Experimental results are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
    [CrossRef]
  2. R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography (Academic, New York, 1971).
  3. L. P. Yaroslavsky, N. S. Merzyalov, Methods of Digital Holography (Consultant Bureau, New York, 1980).
    [CrossRef]
  4. G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Laser Eng. 26, 199–219 (1997).
    [CrossRef]
  5. W. Hassad, D. Cullen, J. Solem, J. Longworth, A. McPherson, K. Boyer, C. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973–4978 (1992).
    [CrossRef]
  6. G. Pedrini, Ph. Fröning, H. Tiziani, F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
    [CrossRef]
  7. G. Pedrini, S. Schedin, H. J. Tiziani, “Spatial filtering in digital holographic microscopy,” J. Mod. Opt. 47, 1447–1454 (2000).
    [CrossRef]
  8. Y. Takaki, H. Ohzu, “Fast numerical reconstruction techniques for high-resolution hybrid holographic microscopy,” Appl. Opt. 38, 2204–2211 (1999).
    [CrossRef]
  9. G. Pedrini, S. Schedin, H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt. 48, 1035–1041 (2001).
  10. T. Zhang, I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
    [CrossRef]
  11. J. G. Fujimoto, W. Drexler, U. Morgner, F. Kärtner, E. Ippen, “Optical coherence tomography: high resolution imaging using echoes of light,” Opt. Photon. News (Nov.2000), pp. 24–31.
  12. T. Dresel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef] [PubMed]
  13. B. Nilsson, T. E. Carlsson, “Direct three-dimensional shape measurement by digital light-in-flight holography,” Appl. Opt. 37, 7954–7959 (1998).
    [CrossRef]
  14. W. An, T. E. Carlsson, “Digital measurement of three-dimensional shapes using light-in-flight speckle interferometry,” Opt. Eng. 38, 1366–1370 (1999).
    [CrossRef]
  15. J. Pomarico, U. Schnars, H-J. Hartmann, W. P. O. Jüpter, “Digital recording and numerical reconstruction of holograms: a new method for displaying light-in-flight,” Appl. Opt. 34, 8095–8099 (1995).
    [CrossRef] [PubMed]
  16. G. Pedrini, S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
    [CrossRef]
  17. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975).
  18. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

2001 (2)

G. Pedrini, S. Schedin, H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt. 48, 1035–1041 (2001).

G. Pedrini, S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

2000 (2)

J. G. Fujimoto, W. Drexler, U. Morgner, F. Kärtner, E. Ippen, “Optical coherence tomography: high resolution imaging using echoes of light,” Opt. Photon. News (Nov.2000), pp. 24–31.

G. Pedrini, S. Schedin, H. J. Tiziani, “Spatial filtering in digital holographic microscopy,” J. Mod. Opt. 47, 1447–1454 (2000).
[CrossRef]

1999 (3)

Y. Takaki, H. Ohzu, “Fast numerical reconstruction techniques for high-resolution hybrid holographic microscopy,” Appl. Opt. 38, 2204–2211 (1999).
[CrossRef]

G. Pedrini, Ph. Fröning, H. Tiziani, F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

W. An, T. E. Carlsson, “Digital measurement of three-dimensional shapes using light-in-flight speckle interferometry,” Opt. Eng. 38, 1366–1370 (1999).
[CrossRef]

1998 (2)

1997 (1)

G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

1995 (1)

1992 (2)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
[CrossRef]

An, W.

W. An, T. E. Carlsson, “Digital measurement of three-dimensional shapes using light-in-flight speckle interferometry,” Opt. Eng. 38, 1366–1370 (1999).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975).

Boyer, K.

Burckhard, C. B.

R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography (Academic, New York, 1971).

Carlsson, T. E.

W. An, T. E. Carlsson, “Digital measurement of three-dimensional shapes using light-in-flight speckle interferometry,” Opt. Eng. 38, 1366–1370 (1999).
[CrossRef]

B. Nilsson, T. E. Carlsson, “Direct three-dimensional shape measurement by digital light-in-flight holography,” Appl. Opt. 37, 7954–7959 (1998).
[CrossRef]

Collier, R. J.

R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography (Academic, New York, 1971).

Cullen, D.

Dresel, T.

Drexler, W.

J. G. Fujimoto, W. Drexler, U. Morgner, F. Kärtner, E. Ippen, “Optical coherence tomography: high resolution imaging using echoes of light,” Opt. Photon. News (Nov.2000), pp. 24–31.

Fröning, Ph.

G. Pedrini, Ph. Fröning, H. Tiziani, F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, W. Drexler, U. Morgner, F. Kärtner, E. Ippen, “Optical coherence tomography: high resolution imaging using echoes of light,” Opt. Photon. News (Nov.2000), pp. 24–31.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Hartmann, H-J.

Hassad, W.

Häusler, G.

Ippen, E.

J. G. Fujimoto, W. Drexler, U. Morgner, F. Kärtner, E. Ippen, “Optical coherence tomography: high resolution imaging using echoes of light,” Opt. Photon. News (Nov.2000), pp. 24–31.

Jüpter, W. P. O.

Kärtner, F.

J. G. Fujimoto, W. Drexler, U. Morgner, F. Kärtner, E. Ippen, “Optical coherence tomography: high resolution imaging using echoes of light,” Opt. Photon. News (Nov.2000), pp. 24–31.

Lin, L. H.

R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography (Academic, New York, 1971).

Longworth, J.

McPherson, A.

Mendoza Santoyo, F.

G. Pedrini, Ph. Fröning, H. Tiziani, F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

Merzyalov, N. S.

L. P. Yaroslavsky, N. S. Merzyalov, Methods of Digital Holography (Consultant Bureau, New York, 1980).
[CrossRef]

Morgner, U.

J. G. Fujimoto, W. Drexler, U. Morgner, F. Kärtner, E. Ippen, “Optical coherence tomography: high resolution imaging using echoes of light,” Opt. Photon. News (Nov.2000), pp. 24–31.

Nilsson, B.

Ohzu, H.

Pedrini, G.

G. Pedrini, S. Schedin, H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt. 48, 1035–1041 (2001).

G. Pedrini, S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

G. Pedrini, S. Schedin, H. J. Tiziani, “Spatial filtering in digital holographic microscopy,” J. Mod. Opt. 47, 1447–1454 (2000).
[CrossRef]

G. Pedrini, Ph. Fröning, H. Tiziani, F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Pomarico, J.

Rhodes, C.

Schedin, S.

G. Pedrini, S. Schedin, H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt. 48, 1035–1041 (2001).

G. Pedrini, S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

G. Pedrini, S. Schedin, H. J. Tiziani, “Spatial filtering in digital holographic microscopy,” J. Mod. Opt. 47, 1447–1454 (2000).
[CrossRef]

Schnars, U.

Solem, J.

Takaki, Y.

Tiziani, H.

G. Pedrini, Ph. Fröning, H. Tiziani, F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Tiziani, H. J.

G. Pedrini, S. Schedin, H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt. 48, 1035–1041 (2001).

G. Pedrini, S. Schedin, H. J. Tiziani, “Spatial filtering in digital holographic microscopy,” J. Mod. Opt. 47, 1447–1454 (2000).
[CrossRef]

Venzke, H.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975).

Yamaguchi, I.

Yaroslavsky, L. P.

L. P. Yaroslavsky, N. S. Merzyalov, Methods of Digital Holography (Consultant Bureau, New York, 1980).
[CrossRef]

Zhang, T.

Zou, Y.

G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Appl. Opt. (5)

J. Mod. Opt. (2)

G. Pedrini, S. Schedin, H. J. Tiziani, “Spatial filtering in digital holographic microscopy,” J. Mod. Opt. 47, 1447–1454 (2000).
[CrossRef]

G. Pedrini, S. Schedin, H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt. 48, 1035–1041 (2001).

Nature (London) (1)

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
[CrossRef]

Opt. Commun. (1)

G. Pedrini, Ph. Fröning, H. Tiziani, F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

Opt. Eng. (1)

W. An, T. E. Carlsson, “Digital measurement of three-dimensional shapes using light-in-flight speckle interferometry,” Opt. Eng. 38, 1366–1370 (1999).
[CrossRef]

Opt. Laser Eng. (1)

G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

J. G. Fujimoto, W. Drexler, U. Morgner, F. Kärtner, E. Ippen, “Optical coherence tomography: high resolution imaging using echoes of light,” Opt. Photon. News (Nov.2000), pp. 24–31.

Optik (1)

G. Pedrini, S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

Other (4)

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography (Academic, New York, 1971).

L. P. Yaroslavsky, N. S. Merzyalov, Methods of Digital Holography (Consultant Bureau, New York, 1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Setup for digital holographic microscopy with a short-coherent laser. L1, lens; M, mirror; BS, beam splitter; MT, moving table. (b) Path of the reference and (c) object beams.

Fig. 2
Fig. 2

Location of object points reflecting light that will interfere with the reference. Not only are the points contributing to the interference located in the plane z = 0 intersecting the sample, there are also contributions from other parts. For the calculation we simulated an illuminated sample surface of 0.5 mm, d = 20 mm, D = 9 mm, θmax = 14°.

Fig. 3
Fig. 3

Scheme for Fresnel reconstruction of a digital hologram (left) and Rayleigh-Sommerfeld reconstruction of an expanded digital hologram (right).

Fig. 4
Fig. 4

Reconstructed images of a part of a 1-pfennig coin recorded by different positions of the reference mirror. The difference between the mirror position from one image to the next is 20 µm.

Fig. 5
Fig. 5

(a) White-light image obtained by imaging of the sample (tissue composed by metallic wires), (b)–(e) numerical reconstruction obtained from digital holograms. The difference between the mirror position from one image to the next is 50 µm.

Fig. 6
Fig. 6

Reconstruction of the image of a microcircuit recorded with a lensless short-coherence arrangement and reconstructed with the Rayleigh-Sommerfeld method.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

IS=IR+i IPi+2 iIRIPi γrsR-sPi/c+2 ijIPjIPi γrsPj-sPi/c,
γrsR-sPi/c=|γsR-sPi/c|cosαsR-sPi/c-2πsR-sPi/λ,
LPi+PiS=LW+WS
Ux, y, d=u1  ufx, fyexp-i 2πdλ1-λ2fx2-λ2fy21/2exp-i2πfxx+fyydfxdfy,

Metrics