Abstract

A system for accurate balancing and controlled unbalancing of the optical path difference in all-fiber optical interferometers is described. Interferometers with various arm lengths (1–30 m) and with initial optical path differences of as much as 1 cm have been successfully balanced within a 5-µm range. In addition, the proposed system allows for controlled unbalancing of arbitrary all-fiber optical interferometers with a precision better than 5 µm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Brooks, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
    [CrossRef]
  2. J. G. Burnett, A. H. Greenaway, R. McBridge, J. D. C. Jones, “Balancing optical path lengths in broadband fiber interferometers,” Appl. Opt. 34, 2164–2201 (1995).
    [CrossRef]
  3. R. H. Wentworth, “Theoretical noise performance of multiplexed interferometric sensors,” J. Lightwave Technol. 7, 941–956 (1989).
    [CrossRef]
  4. J. G. Burnett, J. D. C. Jones, “Cutting optical fibers to equal lengths for broadband stellar interferometry,” Appl. Opt. 31, 2977–2978 (1992).
    [CrossRef] [PubMed]
  5. A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “A short coherence length interferometric fibre optic sensor system” in Fiber Optic and Laser Sensors IV, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 56–58 (1988).
  6. A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol. 15, 808–814 (1997).
    [CrossRef]
  7. H. Scholze, Glass: Nature, Structure and Properties (Springer-Verlag, New York, 1990), p. 159.

1997 (1)

A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol. 15, 808–814 (1997).
[CrossRef]

1995 (1)

1992 (1)

1989 (1)

R. H. Wentworth, “Theoretical noise performance of multiplexed interferometric sensors,” J. Lightwave Technol. 7, 941–956 (1989).
[CrossRef]

1985 (1)

J. L. Brooks, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

Brooks, J. L.

J. L. Brooks, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

Burnett, J. G.

Farahi, F.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “A short coherence length interferometric fibre optic sensor system” in Fiber Optic and Laser Sensors IV, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 56–58 (1988).

Gerges, A. S.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “A short coherence length interferometric fibre optic sensor system” in Fiber Optic and Laser Sensors IV, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 56–58 (1988).

Greenaway, A. H.

Jackson, D. A.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “A short coherence length interferometric fibre optic sensor system” in Fiber Optic and Laser Sensors IV, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 56–58 (1988).

Jones, J. D. C.

J. G. Burnett, A. H. Greenaway, R. McBridge, J. D. C. Jones, “Balancing optical path lengths in broadband fiber interferometers,” Appl. Opt. 34, 2164–2201 (1995).
[CrossRef]

J. G. Burnett, J. D. C. Jones, “Cutting optical fibers to equal lengths for broadband stellar interferometry,” Appl. Opt. 31, 2977–2978 (1992).
[CrossRef] [PubMed]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “A short coherence length interferometric fibre optic sensor system” in Fiber Optic and Laser Sensors IV, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 56–58 (1988).

McBridge, R.

Newson, T. P.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “A short coherence length interferometric fibre optic sensor system” in Fiber Optic and Laser Sensors IV, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 56–58 (1988).

Rose, A. H.

A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol. 15, 808–814 (1997).
[CrossRef]

Scholze, H.

H. Scholze, Glass: Nature, Structure and Properties (Springer-Verlag, New York, 1990), p. 159.

Wentworth, R. H.

R. H. Wentworth, “Theoretical noise performance of multiplexed interferometric sensors,” J. Lightwave Technol. 7, 941–956 (1989).
[CrossRef]

Appl. Opt. (2)

J. Lightwave Technol. (3)

R. H. Wentworth, “Theoretical noise performance of multiplexed interferometric sensors,” J. Lightwave Technol. 7, 941–956 (1989).
[CrossRef]

A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol. 15, 808–814 (1997).
[CrossRef]

J. L. Brooks, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

Other (2)

H. Scholze, Glass: Nature, Structure and Properties (Springer-Verlag, New York, 1990), p. 159.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “A short coherence length interferometric fibre optic sensor system” in Fiber Optic and Laser Sensors IV, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 56–58 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration of the balancing system: PWM, pulse-width-modulated.

Fig. 2
Fig. 2

Configuration of the unbalancing system.

Fig. 3
Fig. 3

Transmission versus fiber expansion for several furnace temperatures.

Fig. 4
Fig. 4

Fiber expansion versus time for several furnace temperatures.

Fig. 5
Fig. 5

Average extinction ratio as a function of temperature: th., thermal.

Fig. 6
Fig. 6

Typical OPDs of two balanced interferometers for cycled furnace temperatures from 20 to 800 C °.

Fig. 7
Fig. 7

Initial versus final OPD for the interferometers that we tested: Std. dev, standard deviation.

Fig. 8
Fig. 8

Typical process of interferometer-controlled unbalancing.

Fig. 9
Fig. 9

Interferogram of a practical coherently addressed interferometric system.

Tables (1)

Tables Icon

Table 1 Relationship between Extinction Ratio and Stretch

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v=lF3πηTr2=keTFl,

Metrics