Abstract

Dispersion properties of novel, tapered, air-silica microstructure fibers are measured between 1.3 and 1.65 µm by white-light interferometry. Dispersion values (β2) of -181 and -152 ps2/km were obtained for 2.2- and 3-µm core sizes, respectively, at λ = 1.55 µm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser, H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021–1039 (1974).
    [CrossRef]
  2. T. A. Birks, W. J. Wadsworth, P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  3. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  4. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  5. T. A. Birks, J. C. Knight, P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  6. J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
    [CrossRef]
  7. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightwave Technol. 18, 1084–1100 (2000).
    [CrossRef]
  8. A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790–792 (2000).
    [CrossRef]
  9. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon Technol. Lett. 13, 52–54 (2001).
    [CrossRef]
  10. L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
    [CrossRef]
  11. D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, “Group velocity dispersion measurements of microstructured fibers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).
  12. K. S. Abedin, M. Hyodo, N. Onodera, “Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation,” Opt. Lett. 25, 299–301 (2000).
    [CrossRef]
  13. H. T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibers,” Electron. Lett. 17, 603–605 (1981).
    [CrossRef]
  14. B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
    [CrossRef]
  15. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, Boston, 1991).
  16. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, R. S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–400 (2001).
    [CrossRef]

2001

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon Technol. Lett. 13, 52–54 (2001).
[CrossRef]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, R. S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–400 (2001).
[CrossRef]

2000

1999

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

1997

T. A. Birks, J. C. Knight, P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

1985

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

1981

H. T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibers,” Electron. Lett. 17, 603–605 (1981).
[CrossRef]

1974

P. Kaiser, H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021–1039 (1974).
[CrossRef]

Abedin, K. S.

Andres, P.

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Astle, H. W.

P. Kaiser, H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021–1039 (1974).
[CrossRef]

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Bergman, K.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

Birks, T. A.

Bjarklev, A.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Broeng, J.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Burdge, G.

Chandalia, J. K.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon Technol. Lett. 13, 52–54 (2001).
[CrossRef]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, R. S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–400 (2001).
[CrossRef]

Cohen, L. G.

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

Collings, B. C.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

Cundiff, S. T.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

Cunningham, J. E.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

Eggleton, B. J.

Ferrando, A.

Gaeta, A. L.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, “Group velocity dispersion measurements of microstructured fibers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).

Homoelle, D.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, “Group velocity dispersion measurements of microstructured fibers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).

Hyodo, M.

Jan, W. Y.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

Kaiser, P.

P. Kaiser, H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021–1039 (1974).
[CrossRef]

Kerbage, C.

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Knox, W. H.

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, R. S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–400 (2001).
[CrossRef]

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

Koch, M.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

Kosinski, S. G.

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, R. S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–400 (2001).
[CrossRef]

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon Technol. Lett. 13, 52–54 (2001).
[CrossRef]

Kutz, J. N.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

Liu, X.

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, R. S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–400 (2001).
[CrossRef]

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon Technol. Lett. 13, 52–54 (2001).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, Boston, 1991).

Miret, J. J.

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Onodera, N.

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Ouzounov, D.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, “Group velocity dispersion measurements of microstructured fibers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).

Ranka, J. K.

Russell, P. S. J.

Russell, P. St. J.

T. A. Birks, W. J. Wadsworth, P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Shang, H. T.

H. T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibers,” Electron. Lett. 17, 603–605 (1981).
[CrossRef]

Silvestre, E.

Stentz, A. J.

Tsuda, S.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

Wadsworth, W. J.

T. A. Birks, W. J. Wadsworth, P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Webb, W. W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, “Group velocity dispersion measurements of microstructured fibers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).

West, J. A.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, “Group velocity dispersion measurements of microstructured fibers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).

Westbrook, P. S.

White, C. A.

Windeler, R. S.

Xu, C.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon Technol. Lett. 13, 52–54 (2001).
[CrossRef]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, R. S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–400 (2001).
[CrossRef]

Zipfel, W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, “Group velocity dispersion measurements of microstructured fibers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).

Bell Syst. Tech. J.

P. Kaiser, H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021–1039 (1974).
[CrossRef]

Electron. Lett.

H. T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibers,” Electron. Lett. 17, 603–605 (1981).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron 3, 1065–1075 (1997).
[CrossRef]

IEEE Photon Technol. Lett.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon Technol. Lett. 13, 52–54 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

J. Lightwave Technol.

Opt. Fiber Technol.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Opt. Lett.

Other

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, “Group velocity dispersion measurements of microstructured fibers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, Boston, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Top, structure of a tapered microstructure fiber; bottom, a single-mode outgoing beam.

Fig. 2
Fig. 2

Experimental arrangement for dispersion measurement by white-light interferometry on tapered air-silica microstructure fiber (top) and the spectral emission curve for the broadband source (bottom).

Fig. 3
Fig. 3

Typical normalized optical spectrum measured at one port of the interferometer. The dots show the measurement data and the curve represents the curve fitting results.

Fig. 4
Fig. 4

Measured total dispersion versus wavelength for TASMFs.

Fig. 5
Fig. 5

Calculated dispersion for TASMFs with a core-cladding index difference of 0.44, and core diameters of 3 (solid line) and 2.2 µm (dashed line) measurement data are also shown.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Iω=|Eƒω+Esω|21+cos ϕω,
ϕω=βƒωL-βsωd,
ϕ=ϕ0+β1ω0L-dcω-ω0+12 β2ω0Lω-ω02+16 β3ω0Lω-ω03+ =ϕ0+β1ω0L-dc2πcλ-2πcλ0+12 β2ω0L2πcλ-2πcλ02+16 β3ω0L2πcλ-2πcλ03+,

Metrics