Abstract

A long-cavity, single-mode, fiber-optic Fabry-Perot resonator has been used to develop white-light fiber-optic multiplexed Michelson interferometers (MMIs). The MMI matrix is constructed and demonstrated. We also analyzed the capacity of the long-cavity Fabry-Perot resonator multiplexing technique. The experimental results of a 2 × 2 fiber-optic interferometric sensor matrix are given, and the effects of polarization are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Petuchowski, T. G. Giallorenzi, S. K. Sheem, “A sensitive fiber-optic Fabry-Perot interferometer,” IEEE J. Quantum Electron. QE-17, 2168–2173 (1981).
    [CrossRef]
  2. A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry-Perot sensor,” Opt. Commun. 45, 71–76 (1983).
    [CrossRef]
  3. P. A. Leilabady, M. Corke, “All-fiber-optic remote sensing of temperature employing interferometric techniques, Opt. Lett. 12, 772–775 (1987).
    [CrossRef] [PubMed]
  4. T. Valis, D. Hogg, R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
    [CrossRef]
  5. J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-37, 302–306 (1990).
    [CrossRef]
  6. C. E. Lee, W. N. Gibler, R. A. Atkins, J. J. Alcoz, H. F. Taylor, K. S. Kim, “Fiber optic Fabry-Perot sensors embedded in metal and in a composite,” in Eighth Optical Fiber Sensor Conference (IEEE Monterey, Calif., 1992), pp. 368–371.
    [CrossRef]
  7. K. Ogusa, “Analysis of end separation in single mode fibers and a fiber Fabry-Perot resonator,” IEEE Photon. Technol. Lett. 4, 602–605 (1992).
    [CrossRef]
  8. S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of the First International Conference on Optical Fiber Sensors (IEE, London, 1983), pp. 132–135.
  9. Th. Bosselman, R. Ulrich, “High accuracy position-sensing with fiber-doupled white light interferometers,” in Proceedings of the Second International Conference on Optical Fiber Sensors (VBE, Berlin, 1984), pp. 361–365.
    [CrossRef]
  10. L. B. Yuan, “White light interferometric fiber-optic strain sensor with three-peak-wavelength broadband LED source,” Appl. Opt. 36, 6246–6250 (1997).
    [CrossRef]
  11. L. B. Yuan, L. M. Zhou, W. Jin, “Quasi-distributed strain sensing with white-light interferometry: a novel approach,” Opt. Lett. 25, 1074–1076 (2000).
    [CrossRef]
  12. C. D. Butter, G. B. Hocker, “Fiber optic strain gauge,” Appl. Opt. 17, 2867–2869 (1978).
    [CrossRef] [PubMed]
  13. L. B. Yuan, “Effect of temperature and strain on fiber optic refractive index,” Acta Opt. Sin. 17, 1713–1717 (1997).
  14. D. Inaudi, A. Elamari, L. Pffug, N. Gisin, J. Breguet, S. Vurpillot, “Low-coherence deformation sensors for the monitoring of civil engineering structures,” Sens. Actuators A 44, 125–130 (1994).
    [CrossRef]

2000 (1)

1997 (2)

L. B. Yuan, “Effect of temperature and strain on fiber optic refractive index,” Acta Opt. Sin. 17, 1713–1717 (1997).

L. B. Yuan, “White light interferometric fiber-optic strain sensor with three-peak-wavelength broadband LED source,” Appl. Opt. 36, 6246–6250 (1997).
[CrossRef]

1994 (1)

D. Inaudi, A. Elamari, L. Pffug, N. Gisin, J. Breguet, S. Vurpillot, “Low-coherence deformation sensors for the monitoring of civil engineering structures,” Sens. Actuators A 44, 125–130 (1994).
[CrossRef]

1992 (1)

K. Ogusa, “Analysis of end separation in single mode fibers and a fiber Fabry-Perot resonator,” IEEE Photon. Technol. Lett. 4, 602–605 (1992).
[CrossRef]

1990 (2)

T. Valis, D. Hogg, R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
[CrossRef]

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-37, 302–306 (1990).
[CrossRef]

1987 (1)

1983 (1)

A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry-Perot sensor,” Opt. Commun. 45, 71–76 (1983).
[CrossRef]

1981 (1)

S. J. Petuchowski, T. G. Giallorenzi, S. K. Sheem, “A sensitive fiber-optic Fabry-Perot interferometer,” IEEE J. Quantum Electron. QE-17, 2168–2173 (1981).
[CrossRef]

1978 (1)

Al-Chalabi, S. A.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of the First International Conference on Optical Fiber Sensors (IEE, London, 1983), pp. 132–135.

Alcoz, J. J.

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-37, 302–306 (1990).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, J. J. Alcoz, H. F. Taylor, K. S. Kim, “Fiber optic Fabry-Perot sensors embedded in metal and in a composite,” in Eighth Optical Fiber Sensor Conference (IEEE Monterey, Calif., 1992), pp. 368–371.
[CrossRef]

Atkins, R. A.

C. E. Lee, W. N. Gibler, R. A. Atkins, J. J. Alcoz, H. F. Taylor, K. S. Kim, “Fiber optic Fabry-Perot sensors embedded in metal and in a composite,” in Eighth Optical Fiber Sensor Conference (IEEE Monterey, Calif., 1992), pp. 368–371.
[CrossRef]

Bosselman, Th.

Th. Bosselman, R. Ulrich, “High accuracy position-sensing with fiber-doupled white light interferometers,” in Proceedings of the Second International Conference on Optical Fiber Sensors (VBE, Berlin, 1984), pp. 361–365.
[CrossRef]

Breguet, J.

D. Inaudi, A. Elamari, L. Pffug, N. Gisin, J. Breguet, S. Vurpillot, “Low-coherence deformation sensors for the monitoring of civil engineering structures,” Sens. Actuators A 44, 125–130 (1994).
[CrossRef]

Butter, C. D.

Corke, M.

Culshaw, B.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of the First International Conference on Optical Fiber Sensors (IEE, London, 1983), pp. 132–135.

Davies, D. E. N.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of the First International Conference on Optical Fiber Sensors (IEE, London, 1983), pp. 132–135.

Elamari, A.

D. Inaudi, A. Elamari, L. Pffug, N. Gisin, J. Breguet, S. Vurpillot, “Low-coherence deformation sensors for the monitoring of civil engineering structures,” Sens. Actuators A 44, 125–130 (1994).
[CrossRef]

Giallorenzi, T. G.

S. J. Petuchowski, T. G. Giallorenzi, S. K. Sheem, “A sensitive fiber-optic Fabry-Perot interferometer,” IEEE J. Quantum Electron. QE-17, 2168–2173 (1981).
[CrossRef]

Gibler, W. N.

C. E. Lee, W. N. Gibler, R. A. Atkins, J. J. Alcoz, H. F. Taylor, K. S. Kim, “Fiber optic Fabry-Perot sensors embedded in metal and in a composite,” in Eighth Optical Fiber Sensor Conference (IEEE Monterey, Calif., 1992), pp. 368–371.
[CrossRef]

Gisin, N.

D. Inaudi, A. Elamari, L. Pffug, N. Gisin, J. Breguet, S. Vurpillot, “Low-coherence deformation sensors for the monitoring of civil engineering structures,” Sens. Actuators A 44, 125–130 (1994).
[CrossRef]

Hocker, G. B.

Hogg, D.

T. Valis, D. Hogg, R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
[CrossRef]

Inaudi, D.

D. Inaudi, A. Elamari, L. Pffug, N. Gisin, J. Breguet, S. Vurpillot, “Low-coherence deformation sensors for the monitoring of civil engineering structures,” Sens. Actuators A 44, 125–130 (1994).
[CrossRef]

Jackson, D. A.

A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry-Perot sensor,” Opt. Commun. 45, 71–76 (1983).
[CrossRef]

Jin, W.

Kersey, A. D.

A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry-Perot sensor,” Opt. Commun. 45, 71–76 (1983).
[CrossRef]

Kim, K. S.

C. E. Lee, W. N. Gibler, R. A. Atkins, J. J. Alcoz, H. F. Taylor, K. S. Kim, “Fiber optic Fabry-Perot sensors embedded in metal and in a composite,” in Eighth Optical Fiber Sensor Conference (IEEE Monterey, Calif., 1992), pp. 368–371.
[CrossRef]

Lee, C. E.

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-37, 302–306 (1990).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, J. J. Alcoz, H. F. Taylor, K. S. Kim, “Fiber optic Fabry-Perot sensors embedded in metal and in a composite,” in Eighth Optical Fiber Sensor Conference (IEEE Monterey, Calif., 1992), pp. 368–371.
[CrossRef]

Leilabady, P. A.

Measures, R. M.

T. Valis, D. Hogg, R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
[CrossRef]

Ogusa, K.

K. Ogusa, “Analysis of end separation in single mode fibers and a fiber Fabry-Perot resonator,” IEEE Photon. Technol. Lett. 4, 602–605 (1992).
[CrossRef]

Petuchowski, S. J.

S. J. Petuchowski, T. G. Giallorenzi, S. K. Sheem, “A sensitive fiber-optic Fabry-Perot interferometer,” IEEE J. Quantum Electron. QE-17, 2168–2173 (1981).
[CrossRef]

Pffug, L.

D. Inaudi, A. Elamari, L. Pffug, N. Gisin, J. Breguet, S. Vurpillot, “Low-coherence deformation sensors for the monitoring of civil engineering structures,” Sens. Actuators A 44, 125–130 (1994).
[CrossRef]

Sheem, S. K.

S. J. Petuchowski, T. G. Giallorenzi, S. K. Sheem, “A sensitive fiber-optic Fabry-Perot interferometer,” IEEE J. Quantum Electron. QE-17, 2168–2173 (1981).
[CrossRef]

Taylor, H. F.

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-37, 302–306 (1990).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, J. J. Alcoz, H. F. Taylor, K. S. Kim, “Fiber optic Fabry-Perot sensors embedded in metal and in a composite,” in Eighth Optical Fiber Sensor Conference (IEEE Monterey, Calif., 1992), pp. 368–371.
[CrossRef]

Ulrich, R.

Th. Bosselman, R. Ulrich, “High accuracy position-sensing with fiber-doupled white light interferometers,” in Proceedings of the Second International Conference on Optical Fiber Sensors (VBE, Berlin, 1984), pp. 361–365.
[CrossRef]

Valis, T.

T. Valis, D. Hogg, R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
[CrossRef]

Vurpillot, S.

D. Inaudi, A. Elamari, L. Pffug, N. Gisin, J. Breguet, S. Vurpillot, “Low-coherence deformation sensors for the monitoring of civil engineering structures,” Sens. Actuators A 44, 125–130 (1994).
[CrossRef]

Yuan, L. B.

Zhou, L. M.

Acta Opt. Sin. (1)

L. B. Yuan, “Effect of temperature and strain on fiber optic refractive index,” Acta Opt. Sin. 17, 1713–1717 (1997).

Appl. Opt. (2)

IEEE J. Quantum Electron (1)

S. J. Petuchowski, T. G. Giallorenzi, S. K. Sheem, “A sensitive fiber-optic Fabry-Perot interferometer,” IEEE J. Quantum Electron. QE-17, 2168–2173 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Valis, D. Hogg, R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
[CrossRef]

K. Ogusa, “Analysis of end separation in single mode fibers and a fiber Fabry-Perot resonator,” IEEE Photon. Technol. Lett. 4, 602–605 (1992).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-37, 302–306 (1990).
[CrossRef]

Opt. Commun. (1)

A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry-Perot sensor,” Opt. Commun. 45, 71–76 (1983).
[CrossRef]

Opt. Lett. (2)

Sens. Actuators A (1)

D. Inaudi, A. Elamari, L. Pffug, N. Gisin, J. Breguet, S. Vurpillot, “Low-coherence deformation sensors for the monitoring of civil engineering structures,” Sens. Actuators A 44, 125–130 (1994).
[CrossRef]

Other (3)

C. E. Lee, W. N. Gibler, R. A. Atkins, J. J. Alcoz, H. F. Taylor, K. S. Kim, “Fiber optic Fabry-Perot sensors embedded in metal and in a composite,” in Eighth Optical Fiber Sensor Conference (IEEE Monterey, Calif., 1992), pp. 368–371.
[CrossRef]

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of the First International Conference on Optical Fiber Sensors (IEE, London, 1983), pp. 132–135.

Th. Bosselman, R. Ulrich, “High accuracy position-sensing with fiber-doupled white light interferometers,” in Proceedings of the Second International Conference on Optical Fiber Sensors (VBE, Berlin, 1984), pp. 361–365.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fiber optic FP resonator.

Fig. 2
Fig. 2

Configuration of MMIs matrix by a fiber-optic FP resonator.

Fig. 3
Fig. 3

Optical-path pair of Michelson interferometric fiber sensor matrix reflective signals. (a) Reflective signals from fiber segments of the uth row. (b) Reflective signals via the FP resonator.

Fig. 4
Fig. 4

Simulation results of 4 × 4 fiber-optic sensor matrix output signals intensity for any u (u = 1, 2, 3, 4) with the parameter of the FP resonator R changing from 0.1 to 0.8 and the light source power equaling 0.5 mW.

Fig. 5
Fig. 5

Simulation results of 3 × 3 fiber-optic matrix output signals’ intensity with the parameter of the FP resonator reflectivity R changing from 0.1 to 0.8 and the light source power equaling 0.1 mW.

Fig. 6
Fig. 6

Normalized output signal intensity versus the column number v of the 5 × 5 fiber-optic sensor matrix.

Fig. 7
Fig. 7

Multiplexed 2 × 2 fiber-optic, white-light interferometric sensor matrix output signals.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Eink, t=E0kexp-jkct,
Eoutk, t=E0kp=0R1 R2p/2T1β1T2β21/2×exp-jkct-2pnl0,
2nLu+2n i=1v lui, u=1, 2, 3,, M, v=0, 1, 2,, N,
E1k, t=Ek2u=1Mv=0NRuv1/2Mi=1v TuiβuiTuiβui×exp-jkct-2nLu-2n i=1v lui,
2nL0+2vnl0+2Xuv,u=1, 2, 3,, M, v=0, 1, 2,, N.
E2k, t=Ek2u=1Mv=0Nv+1R01/2fXuv×R1R2v/2T1β1T2β21/2×exp-jkct-2nL0-2vnl0-2Xuv,
IMk, Xuv=E1k, t+E2k, tE1k, t+E2k, t* =EkE*k4u=1Mv=0Nm=1Mp=1NBuv+Cmp+2BuvCmp1/2 coskx,
Buv=RuvM2i=1v TuiβuiTuiβui2, u=1, 2, 3,, M, v=0, 1, 2,, N,
Cmp=v+1R0f2XmpR1R2pT1β1T2β2, m=1, 2, 3,, M, p=0, 1, 2,, N,
x=2Xuv+2nL0-Lm+2nvl0-i=1p lmi, u, m=1, 2, 3,, M, v, p=0, 1, 2,, N.
Ik=EkE*k=E0kE0*kLc2π1/2ξexp-Lc2k-k022ξ2=I0Lc2π1/2ξexp-Lc2k-k022ξ2,
IX=-+E1k, t+E2k, tE1k, t+E2k, t*dk =14u=1Mv=0Nm=1Mp=1N-+ IkBuv+Cmp+2BuvCmp1/2 coskxdk.
|x|Lccoherence length.
IXuv=14u=1Mv=0N-+I0Lc2π1/2ξ×exp-Lc2k-k022ξ2Buv+Cuv+2BuvCuv1/2 coskxdk.
IXuv=14u=1Mv=0N-+I0Lc2π1/2ξexp-Lc2k22ξ2×Buv+Cuv+2BuvCuv1/2×cosk+k0xdk =I04u=1Mv=0N-+Lc2π1/2ξexp-Lc2k22ξ2×Buv+Cuv+2BuvCuv1/2coskx×cosk0x-sinkxsink0xdk =I04u=1Mv=0NBuv+Cuv+2BuvCuv1/2×exp-ξ22Lc2 x2cosk0x.
Xuv=nLv-L0+i=1vlui-l0, u=1, 2, 3,, M, v=0, 1, 2,, N.
Λuv=nluv-l0, u=1, 2, 3,, M, v=0, 1, 2,, N.
ΔΛuv=Δnluv, u=1, 2, 3,, M, v=0, 1, 2,, N.
ΔΛuv=nΔluvεuv+luvΔnεuv, u=1, 2, 3,, M, v=0, 1, 2,, N,
Δnεuv=-1/2n31-μp12-μp11εuv,
ε11ε12ε21ε22εMN=ηn×ΔΛ11l11ΔΛ12l12ΔΛ21l21ΔΛ22l22ΔΛMNlMN,
ηn=n1-1/2n21-μp12-μp11.
ΔΛuv=nT0luvT0αT+CTTuv-T0.
Tuv=ΔΛuvnT0luvT0αT+CT+T0, u=1, 2, 3,, M, v=0, 1, 2, , N,
IDu, vImin, u=1, 2, 3,, M, v=0, 1, 2,, N.
IXuvx=0=I02BuvCuv1/2 =I02RuvM2i=1v TuiβuiTuiβui2v+1×R0f2XuvT1β1T2β2R1R2v1/2.
|nluv-lmp|2Lc+|Δnluv|max+|Δnlmp|max, |nluv-l0|2Lc+|Δnluv|max, u,m=1Mv,p=0N |nluv-lmp|LTranslation stage.

Metrics