Abstract

Fiber-optic photoacoustic sources for nondestructive testing and biomedical applications are described. The photoacoustic sources consist of a pulsed laser, a fiber-optic cable, and a generation head. The generation head is a miniature hermetically sealed chamber, which can be embedded into solid structures or immersed in liquid media. The face of the chamber acts as a target for laser irradiation. Bulk ultrasonic waves generated inside of the target are transmitted into the medium. The proposed systems offer wide ultrasonic range (0.5–15 MHz), easy control over directivity of the ultrasonic beam, high efficiency of generation, and the ability to operate in a harsh environment. Sources with different radiation patterns with respect to the optical axis of the fiber, such as normal, sideways, as well as focused, have been devised. We present a proof-of-concept experiment using these sources in combination with fiber-optic ultrasonic receivers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, New York, 1990).
  2. V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 36–47 (2000).
    [CrossRef]
  3. E. V. Savateeva, A. A. Karabutov, M. Motamedi, B. Bell, R. Johnigan, A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 55–66 (2000).
    [CrossRef]
  4. J. M. Dodick, “Surgical instrument with input power transducer,” U.S. patent5,324,282 (28June1994).
  5. W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).
  6. F. S. Nikolaevich, K. V. Grigorievna, B. A. Vyacheslavovich, E. A. Viktorovich, A. J. Vladislavovich, “Device for removing cataracts,” U.S. patent6,322,557 (27November2001).
  7. P. A. Fomitchov, A. Kromine, S. Krishnaswamy, J. D. Achenbach, U. K. Kim, I. M. Daniel, “Laser ultrasonic enabled ‘smart’ mold for composite parts manufacturing,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds., AIP Conf. Proc.20, 1802–1807 (2000).
  8. D. L. Balageas, N. Jaroslavsky, M. Dupont, F. Lepoutre, “Ultrasound generation in composites via embedded optical fiber,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.17, 691–698 (1998).
    [CrossRef]
  9. Q. X. Chen, R. J. Dewhurst, P. A. Payne, B. Wood, “A new laser-ultrasound transducer for medical applications,” Ultrasonics 32, 309–313 (1994).
    [CrossRef] [PubMed]
  10. K. A. Roome, P. A. Payne, R. J. Dewhurst, “Towards a sideways looking intravascular laser-ultrasound probe,” Sens. Actuators A 76 (1–3), 197–202 (1999).
  11. P. C. Beard, F. Perennes, E. Draguioti, T. N. Mills, “Optical fiber photoacoustic-photothermal probe,” Opt. Lett. 23, 1235–1237 (1998).
    [CrossRef]
  12. A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
    [CrossRef] [PubMed]
  13. R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock-waves in the pulsed-laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
    [CrossRef]
  14. A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
    [CrossRef]
  15. I. G. Calasso, W. Craig, G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
    [CrossRef] [PubMed]
  16. A. J. De Maria, M. J. Brienza, “Laser induced acoustic generator,” U.S. patent3,532,181 (6October1970).
  17. R. J. Von Gutfeld, R. L. Melcher, “20-MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett. 33, 175–181 (1980).
  18. M. Oksanen, J. Wu, “Prediction of the temporal shape of an ultrasonic pulse in a photoacoustic sensing application,” Ultrasonics 32, 43–46 (1994).
    [CrossRef]
  19. R. J. Von Gutfeld, “Thermoelastic generation of elastic waves for non-destructive testing and medical applications,” Ultrasonics 18, 175–181 (1980).
    [CrossRef] [PubMed]
  20. E. Biagi, M. Brenci, S. Fontani, L. Masotti, M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for nondestructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
    [CrossRef]
  21. D. Menichelli, E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. 3 (4), 23–31 (2001).
  22. J. Krautkrämer, H. Krautkrämer, Ultrasonic Testing of Materials, 3rd ed. (Springer-Verlag, New York, 1983).
    [CrossRef]
  23. P. A. Fomitchov, Y. K. Kim, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
    [CrossRef]
  24. C. I. Swift, S. G. Pierce, B. Culshaw, “Laser generated ultrasound using directly coated fibre optic patchcords,” Electron. Lett. 36, 2113–2114 (2000).
    [CrossRef]
  25. P. A. Fomitchov, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, “Fiberized laser ultrasonic source for process monitoring and biomedical applications,” in Applications of Optical Fiber Sensors, A. J. Rogers, ed., Proc. SPIE4074, 127–134 (2000).
    [CrossRef]
  26. E. Biagi, F. Margheri, D. Menichelli, “Efficient laser ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
    [CrossRef]
  27. M. Dubois, P. W. Lorraine, B. Venchiarutti, A. S. Bauco, R. J. Filkins, T. E. Drake, K. R. Yawn, “Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.19A, 287–294 (2000).
  28. C. Edwards, T. Stratoudaki, S. Dixon, S. B. Palmer, “Laser based ultrasound generation efficiency in carbon fibre reinforced composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.20A, 220–227 (2001).
  29. M. Dubois, P. W. Lorraine, R. J. Filkins, T. E. Drake, “Experimental comparison between optical spectroscopy and laser-ultrasound generation in polymer-matrix composites,” Appl. Phys. Lett. 79, 1813–1815 (2001).
    [CrossRef]
  30. P. A. Lewin, R. Bhatia, Q. Zhang, J. M. Dodick, “Characterization of optoacoustic surgical devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 519–526 (1996).
    [CrossRef]
  31. R. Erbel, ed., Intravascular Ultrasound (Martin Dunitz, London, 1998).
  32. D. A. Hutchins, R. J. Dewhurst, S. B. Palmer, “Directivity patterns of laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 70, 1362–1369 (1981).
    [CrossRef]
  33. S. Fassbender, B. Hoffmann, W. Arnold, “Efficient generation of acoustic pressure waves by short laser pulses,” Mater. Sci. Eng. A 122, 37–41 (1989).
    [CrossRef]
  34. K. L. Telschow, R. J. Conant, “Optical and thermal parameter effects on laser-generated ultrasound,” J. Acoust. Soc. Am. 88, 1494–1502 (1990).
    [CrossRef]
  35. A. Dandridge, “Fiber optic sensors based on the Mach-Zehnder and Michelson interferometers,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 271–323.
  36. P. A. Fomitchov, T. W. Murray, S. Krishnaswamy, “Intrinsic fiber-optic ultrasonic sensor array using multiplexed two-wave mixing interferometry,” Appl. Opt. 41, 1262–1266 (2002).
    [CrossRef] [PubMed]

2002 (1)

2001 (4)

I. G. Calasso, W. Craig, G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
[CrossRef] [PubMed]

D. Menichelli, E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. 3 (4), 23–31 (2001).

E. Biagi, F. Margheri, D. Menichelli, “Efficient laser ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
[CrossRef]

M. Dubois, P. W. Lorraine, R. J. Filkins, T. E. Drake, “Experimental comparison between optical spectroscopy and laser-ultrasound generation in polymer-matrix composites,” Appl. Phys. Lett. 79, 1813–1815 (2001).
[CrossRef]

2000 (2)

C. I. Swift, S. G. Pierce, B. Culshaw, “Laser generated ultrasound using directly coated fibre optic patchcords,” Electron. Lett. 36, 2113–2114 (2000).
[CrossRef]

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

1999 (1)

K. A. Roome, P. A. Payne, R. J. Dewhurst, “Towards a sideways looking intravascular laser-ultrasound probe,” Sens. Actuators A 76 (1–3), 197–202 (1999).

1998 (1)

1997 (2)

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[CrossRef] [PubMed]

E. Biagi, M. Brenci, S. Fontani, L. Masotti, M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for nondestructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[CrossRef]

1996 (1)

P. A. Lewin, R. Bhatia, Q. Zhang, J. M. Dodick, “Characterization of optoacoustic surgical devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 519–526 (1996).
[CrossRef]

1994 (2)

Q. X. Chen, R. J. Dewhurst, P. A. Payne, B. Wood, “A new laser-ultrasound transducer for medical applications,” Ultrasonics 32, 309–313 (1994).
[CrossRef] [PubMed]

M. Oksanen, J. Wu, “Prediction of the temporal shape of an ultrasonic pulse in a photoacoustic sensing application,” Ultrasonics 32, 43–46 (1994).
[CrossRef]

1993 (1)

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock-waves in the pulsed-laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef]

1990 (1)

K. L. Telschow, R. J. Conant, “Optical and thermal parameter effects on laser-generated ultrasound,” J. Acoust. Soc. Am. 88, 1494–1502 (1990).
[CrossRef]

1989 (1)

S. Fassbender, B. Hoffmann, W. Arnold, “Efficient generation of acoustic pressure waves by short laser pulses,” Mater. Sci. Eng. A 122, 37–41 (1989).
[CrossRef]

1981 (1)

D. A. Hutchins, R. J. Dewhurst, S. B. Palmer, “Directivity patterns of laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 70, 1362–1369 (1981).
[CrossRef]

1980 (2)

R. J. Von Gutfeld, R. L. Melcher, “20-MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett. 33, 175–181 (1980).

R. J. Von Gutfeld, “Thermoelastic generation of elastic waves for non-destructive testing and medical applications,” Ultrasonics 18, 175–181 (1980).
[CrossRef] [PubMed]

Achenbach, J. D.

P. A. Fomitchov, Y. K. Kim, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

P. A. Fomitchov, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, “Fiberized laser ultrasonic source for process monitoring and biomedical applications,” in Applications of Optical Fiber Sensors, A. J. Rogers, ed., Proc. SPIE4074, 127–134 (2000).
[CrossRef]

P. A. Fomitchov, A. Kromine, S. Krishnaswamy, J. D. Achenbach, U. K. Kim, I. M. Daniel, “Laser ultrasonic enabled ‘smart’ mold for composite parts manufacturing,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds., AIP Conf. Proc.20, 1802–1807 (2000).

Aleinikov, V.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Andreev, V. G.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Arnold, W.

S. Fassbender, B. Hoffmann, W. Arnold, “Efficient generation of acoustic pressure waves by short laser pulses,” Mater. Sci. Eng. A 122, 37–41 (1989).
[CrossRef]

Balageas, D. L.

D. L. Balageas, N. Jaroslavsky, M. Dupont, F. Lepoutre, “Ultrasound generation in composites via embedded optical fiber,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.17, 691–698 (1998).
[CrossRef]

Bauco, A. S.

M. Dubois, P. W. Lorraine, B. Venchiarutti, A. S. Bauco, R. J. Filkins, T. E. Drake, K. R. Yawn, “Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.19A, 287–294 (2000).

Beard, P. C.

Bell, B.

E. V. Savateeva, A. A. Karabutov, M. Motamedi, B. Bell, R. Johnigan, A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 55–66 (2000).
[CrossRef]

Benett, W.

W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).

Bhatia, R.

P. A. Lewin, R. Bhatia, Q. Zhang, J. M. Dodick, “Characterization of optoacoustic surgical devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 519–526 (1996).
[CrossRef]

Biagi, E.

E. Biagi, F. Margheri, D. Menichelli, “Efficient laser ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
[CrossRef]

D. Menichelli, E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. 3 (4), 23–31 (2001).

E. Biagi, M. Brenci, S. Fontani, L. Masotti, M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for nondestructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[CrossRef]

Brenci, M.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for nondestructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[CrossRef]

Brienza, M. J.

A. J. De Maria, M. J. Brienza, “Laser induced acoustic generator,” U.S. patent3,532,181 (6October1970).

Calasso, I. G.

I. G. Calasso, W. Craig, G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
[CrossRef] [PubMed]

Celliers, P.

W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).

Chen, Q. X.

Q. X. Chen, R. J. Dewhurst, P. A. Payne, B. Wood, “A new laser-ultrasound transducer for medical applications,” Ultrasonics 32, 309–313 (1994).
[CrossRef] [PubMed]

Conant, R. J.

K. L. Telschow, R. J. Conant, “Optical and thermal parameter effects on laser-generated ultrasound,” J. Acoust. Soc. Am. 88, 1494–1502 (1990).
[CrossRef]

Craig, W.

I. G. Calasso, W. Craig, G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
[CrossRef] [PubMed]

Culshaw, B.

C. I. Swift, S. G. Pierce, B. Culshaw, “Laser generated ultrasound using directly coated fibre optic patchcords,” Electron. Lett. 36, 2113–2114 (2000).
[CrossRef]

Da Silva, L.

W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).

Dandridge, A.

A. Dandridge, “Fiber optic sensors based on the Mach-Zehnder and Michelson interferometers,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 271–323.

Daniel, I. M.

P. A. Fomitchov, A. Kromine, S. Krishnaswamy, J. D. Achenbach, U. K. Kim, I. M. Daniel, “Laser ultrasonic enabled ‘smart’ mold for composite parts manufacturing,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds., AIP Conf. Proc.20, 1802–1807 (2000).

P. A. Fomitchov, Y. K. Kim, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

De Maria, A. J.

A. J. De Maria, M. J. Brienza, “Laser induced acoustic generator,” U.S. patent3,532,181 (6October1970).

Dewhurst, R. J.

K. A. Roome, P. A. Payne, R. J. Dewhurst, “Towards a sideways looking intravascular laser-ultrasound probe,” Sens. Actuators A 76 (1–3), 197–202 (1999).

Q. X. Chen, R. J. Dewhurst, P. A. Payne, B. Wood, “A new laser-ultrasound transducer for medical applications,” Ultrasonics 32, 309–313 (1994).
[CrossRef] [PubMed]

D. A. Hutchins, R. J. Dewhurst, S. B. Palmer, “Directivity patterns of laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 70, 1362–1369 (1981).
[CrossRef]

Diebold, G. J.

I. G. Calasso, W. Craig, G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
[CrossRef] [PubMed]

Dixon, S.

C. Edwards, T. Stratoudaki, S. Dixon, S. B. Palmer, “Laser based ultrasound generation efficiency in carbon fibre reinforced composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.20A, 220–227 (2001).

Dodick, J. M.

P. A. Lewin, R. Bhatia, Q. Zhang, J. M. Dodick, “Characterization of optoacoustic surgical devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 519–526 (1996).
[CrossRef]

J. M. Dodick, “Surgical instrument with input power transducer,” U.S. patent5,324,282 (28June1994).

Draguioti, E.

Drain, L. E.

C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, New York, 1990).

Drake, T. E.

M. Dubois, P. W. Lorraine, R. J. Filkins, T. E. Drake, “Experimental comparison between optical spectroscopy and laser-ultrasound generation in polymer-matrix composites,” Appl. Phys. Lett. 79, 1813–1815 (2001).
[CrossRef]

M. Dubois, P. W. Lorraine, B. Venchiarutti, A. S. Bauco, R. J. Filkins, T. E. Drake, K. R. Yawn, “Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.19A, 287–294 (2000).

Dubois, M.

M. Dubois, P. W. Lorraine, R. J. Filkins, T. E. Drake, “Experimental comparison between optical spectroscopy and laser-ultrasound generation in polymer-matrix composites,” Appl. Phys. Lett. 79, 1813–1815 (2001).
[CrossRef]

M. Dubois, P. W. Lorraine, B. Venchiarutti, A. S. Bauco, R. J. Filkins, T. E. Drake, K. R. Yawn, “Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.19A, 287–294 (2000).

Dupont, M.

D. L. Balageas, N. Jaroslavsky, M. Dupont, F. Lepoutre, “Ultrasound generation in composites via embedded optical fiber,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.17, 691–698 (1998).
[CrossRef]

Edwards, C.

C. Edwards, T. Stratoudaki, S. Dixon, S. B. Palmer, “Laser based ultrasound generation efficiency in carbon fibre reinforced composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.20A, 220–227 (2001).

Esenaliev, R. O.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock-waves in the pulsed-laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef]

Fassbender, S.

S. Fassbender, B. Hoffmann, W. Arnold, “Efficient generation of acoustic pressure waves by short laser pulses,” Mater. Sci. Eng. A 122, 37–41 (1989).
[CrossRef]

Filkins, R. J.

M. Dubois, P. W. Lorraine, R. J. Filkins, T. E. Drake, “Experimental comparison between optical spectroscopy and laser-ultrasound generation in polymer-matrix composites,” Appl. Phys. Lett. 79, 1813–1815 (2001).
[CrossRef]

M. Dubois, P. W. Lorraine, B. Venchiarutti, A. S. Bauco, R. J. Filkins, T. E. Drake, K. R. Yawn, “Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.19A, 287–294 (2000).

Fleming, R. D.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Fomitchov, P. A.

P. A. Fomitchov, T. W. Murray, S. Krishnaswamy, “Intrinsic fiber-optic ultrasonic sensor array using multiplexed two-wave mixing interferometry,” Appl. Opt. 41, 1262–1266 (2002).
[CrossRef] [PubMed]

P. A. Fomitchov, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, “Fiberized laser ultrasonic source for process monitoring and biomedical applications,” in Applications of Optical Fiber Sensors, A. J. Rogers, ed., Proc. SPIE4074, 127–134 (2000).
[CrossRef]

P. A. Fomitchov, A. Kromine, S. Krishnaswamy, J. D. Achenbach, U. K. Kim, I. M. Daniel, “Laser ultrasonic enabled ‘smart’ mold for composite parts manufacturing,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds., AIP Conf. Proc.20, 1802–1807 (2000).

P. A. Fomitchov, Y. K. Kim, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

Fontani, S.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for nondestructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[CrossRef]

Glinsky, M.

W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).

Grigorievna, K. V.

F. S. Nikolaevich, K. V. Grigorievna, B. A. Vyacheslavovich, E. A. Viktorovich, A. J. Vladislavovich, “Device for removing cataracts,” U.S. patent6,322,557 (27November2001).

Hoffmann, B.

S. Fassbender, B. Hoffmann, W. Arnold, “Efficient generation of acoustic pressure waves by short laser pulses,” Mater. Sci. Eng. A 122, 37–41 (1989).
[CrossRef]

Hutchins, D. A.

D. A. Hutchins, R. J. Dewhurst, S. B. Palmer, “Directivity patterns of laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 70, 1362–1369 (1981).
[CrossRef]

Jacques, S. L.

Jaroslavsky, N.

D. L. Balageas, N. Jaroslavsky, M. Dupont, F. Lepoutre, “Ultrasound generation in composites via embedded optical fiber,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.17, 691–698 (1998).
[CrossRef]

Johnigan, R.

E. V. Savateeva, A. A. Karabutov, M. Motamedi, B. Bell, R. Johnigan, A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 55–66 (2000).
[CrossRef]

Karabutov, A. A.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock-waves in the pulsed-laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef]

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 36–47 (2000).
[CrossRef]

E. V. Savateeva, A. A. Karabutov, M. Motamedi, B. Bell, R. Johnigan, A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 55–66 (2000).
[CrossRef]

Kim, U. K.

P. A. Fomitchov, A. Kromine, S. Krishnaswamy, J. D. Achenbach, U. K. Kim, I. M. Daniel, “Laser ultrasonic enabled ‘smart’ mold for composite parts manufacturing,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds., AIP Conf. Proc.20, 1802–1807 (2000).

Kim, Y. K.

P. A. Fomitchov, Y. K. Kim, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

Krautkrämer, H.

J. Krautkrämer, H. Krautkrämer, Ultrasonic Testing of Materials, 3rd ed. (Springer-Verlag, New York, 1983).
[CrossRef]

Krautkrämer, J.

J. Krautkrämer, H. Krautkrämer, Ultrasonic Testing of Materials, 3rd ed. (Springer-Verlag, New York, 1983).
[CrossRef]

Krishnaswamy, S.

P. A. Fomitchov, T. W. Murray, S. Krishnaswamy, “Intrinsic fiber-optic ultrasonic sensor array using multiplexed two-wave mixing interferometry,” Appl. Opt. 41, 1262–1266 (2002).
[CrossRef] [PubMed]

P. A. Fomitchov, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, “Fiberized laser ultrasonic source for process monitoring and biomedical applications,” in Applications of Optical Fiber Sensors, A. J. Rogers, ed., Proc. SPIE4074, 127–134 (2000).
[CrossRef]

P. A. Fomitchov, A. Kromine, S. Krishnaswamy, J. D. Achenbach, U. K. Kim, I. M. Daniel, “Laser ultrasonic enabled ‘smart’ mold for composite parts manufacturing,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds., AIP Conf. Proc.20, 1802–1807 (2000).

P. A. Fomitchov, Y. K. Kim, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

Kromine, A.

P. A. Fomitchov, A. Kromine, S. Krishnaswamy, J. D. Achenbach, U. K. Kim, I. M. Daniel, “Laser ultrasonic enabled ‘smart’ mold for composite parts manufacturing,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds., AIP Conf. Proc.20, 1802–1807 (2000).

Kromine, A. K.

P. A. Fomitchov, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, “Fiberized laser ultrasonic source for process monitoring and biomedical applications,” in Applications of Optical Fiber Sensors, A. J. Rogers, ed., Proc. SPIE4074, 127–134 (2000).
[CrossRef]

P. A. Fomitchov, Y. K. Kim, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

Krulevich, P.

W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).

Lee, A.

W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).

Lepoutre, F.

D. L. Balageas, N. Jaroslavsky, M. Dupont, F. Lepoutre, “Ultrasound generation in composites via embedded optical fiber,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.17, 691–698 (1998).
[CrossRef]

Letokhov, V. S.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock-waves in the pulsed-laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef]

Lewin, P. A.

P. A. Lewin, R. Bhatia, Q. Zhang, J. M. Dodick, “Characterization of optoacoustic surgical devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 519–526 (1996).
[CrossRef]

London, R.

W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).

Lorraine, P. W.

M. Dubois, P. W. Lorraine, R. J. Filkins, T. E. Drake, “Experimental comparison between optical spectroscopy and laser-ultrasound generation in polymer-matrix composites,” Appl. Phys. Lett. 79, 1813–1815 (2001).
[CrossRef]

M. Dubois, P. W. Lorraine, B. Venchiarutti, A. S. Bauco, R. J. Filkins, T. E. Drake, K. R. Yawn, “Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.19A, 287–294 (2000).

Maitland, D.

W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).

Malinsky, T. V.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock-waves in the pulsed-laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef]

Margheri, F.

E. Biagi, F. Margheri, D. Menichelli, “Efficient laser ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
[CrossRef]

Masotti, L.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for nondestructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[CrossRef]

Matthews, D.

W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).

Melcher, R. L.

R. J. Von Gutfeld, R. L. Melcher, “20-MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett. 33, 175–181 (1980).

Menichelli, D.

E. Biagi, F. Margheri, D. Menichelli, “Efficient laser ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
[CrossRef]

D. Menichelli, E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. 3 (4), 23–31 (2001).

Mills, T. N.

Motamedi, M.

E. V. Savateeva, A. A. Karabutov, M. Motamedi, B. Bell, R. Johnigan, A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 55–66 (2000).
[CrossRef]

Murray, T. W.

Nikolaevich, F. S.

F. S. Nikolaevich, K. V. Grigorievna, B. A. Vyacheslavovich, E. A. Viktorovich, A. J. Vladislavovich, “Device for removing cataracts,” U.S. patent6,322,557 (27November2001).

Oksanen, M.

M. Oksanen, J. Wu, “Prediction of the temporal shape of an ultrasonic pulse in a photoacoustic sensing application,” Ultrasonics 32, 43–46 (1994).
[CrossRef]

Oraevsky, A. A.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[CrossRef] [PubMed]

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock-waves in the pulsed-laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef]

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 36–47 (2000).
[CrossRef]

E. V. Savateeva, A. A. Karabutov, M. Motamedi, B. Bell, R. Johnigan, A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 55–66 (2000).
[CrossRef]

Palmer, S. B.

D. A. Hutchins, R. J. Dewhurst, S. B. Palmer, “Directivity patterns of laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 70, 1362–1369 (1981).
[CrossRef]

C. Edwards, T. Stratoudaki, S. Dixon, S. B. Palmer, “Laser based ultrasound generation efficiency in carbon fibre reinforced composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.20A, 220–227 (2001).

Payne, P. A.

K. A. Roome, P. A. Payne, R. J. Dewhurst, “Towards a sideways looking intravascular laser-ultrasound probe,” Sens. Actuators A 76 (1–3), 197–202 (1999).

Q. X. Chen, R. J. Dewhurst, P. A. Payne, B. Wood, “A new laser-ultrasound transducer for medical applications,” Ultrasonics 32, 309–313 (1994).
[CrossRef] [PubMed]

Perennes, F.

Pieraccini, M.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for nondestructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[CrossRef]

Pierce, S. G.

C. I. Swift, S. G. Pierce, B. Culshaw, “Laser generated ultrasound using directly coated fibre optic patchcords,” Electron. Lett. 36, 2113–2114 (2000).
[CrossRef]

Podymova, N. B.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

Roome, K. A.

K. A. Roome, P. A. Payne, R. J. Dewhurst, “Towards a sideways looking intravascular laser-ultrasound probe,” Sens. Actuators A 76 (1–3), 197–202 (1999).

Savateeva, E. V.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

E. V. Savateeva, A. A. Karabutov, M. Motamedi, B. Bell, R. Johnigan, A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 55–66 (2000).
[CrossRef]

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Scruby, C. B.

C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, New York, 1990).

Solomatin, S. V.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Stratoudaki, T.

C. Edwards, T. Stratoudaki, S. Dixon, S. B. Palmer, “Laser based ultrasound generation efficiency in carbon fibre reinforced composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.20A, 220–227 (2001).

Swift, C. I.

C. I. Swift, S. G. Pierce, B. Culshaw, “Laser generated ultrasound using directly coated fibre optic patchcords,” Electron. Lett. 36, 2113–2114 (2000).
[CrossRef]

Telschow, K. L.

K. L. Telschow, R. J. Conant, “Optical and thermal parameter effects on laser-generated ultrasound,” J. Acoust. Soc. Am. 88, 1494–1502 (1990).
[CrossRef]

Tittel, F. K.

Venchiarutti, B.

M. Dubois, P. W. Lorraine, B. Venchiarutti, A. S. Bauco, R. J. Filkins, T. E. Drake, K. R. Yawn, “Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.19A, 287–294 (2000).

Viktorovich, E. A.

F. S. Nikolaevich, K. V. Grigorievna, B. A. Vyacheslavovich, E. A. Viktorovich, A. J. Vladislavovich, “Device for removing cataracts,” U.S. patent6,322,557 (27November2001).

Vladislavovich, A. J.

F. S. Nikolaevich, K. V. Grigorievna, B. A. Vyacheslavovich, E. A. Viktorovich, A. J. Vladislavovich, “Device for removing cataracts,” U.S. patent6,322,557 (27November2001).

Von Gutfeld, R. J.

R. J. Von Gutfeld, R. L. Melcher, “20-MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett. 33, 175–181 (1980).

R. J. Von Gutfeld, “Thermoelastic generation of elastic waves for non-destructive testing and medical applications,” Ultrasonics 18, 175–181 (1980).
[CrossRef] [PubMed]

Vyacheslavovich, B. A.

F. S. Nikolaevich, K. V. Grigorievna, B. A. Vyacheslavovich, E. A. Viktorovich, A. J. Vladislavovich, “Device for removing cataracts,” U.S. patent6,322,557 (27November2001).

Wood, B.

Q. X. Chen, R. J. Dewhurst, P. A. Payne, B. Wood, “A new laser-ultrasound transducer for medical applications,” Ultrasonics 32, 309–313 (1994).
[CrossRef] [PubMed]

Wu, J.

M. Oksanen, J. Wu, “Prediction of the temporal shape of an ultrasonic pulse in a photoacoustic sensing application,” Ultrasonics 32, 43–46 (1994).
[CrossRef]

Yawn, K. R.

M. Dubois, P. W. Lorraine, B. Venchiarutti, A. S. Bauco, R. J. Filkins, T. E. Drake, K. R. Yawn, “Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.19A, 287–294 (2000).

Zhang, Q.

P. A. Lewin, R. Bhatia, Q. Zhang, J. M. Dodick, “Characterization of optoacoustic surgical devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 519–526 (1996).
[CrossRef]

Zhulina, Y. V.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. J. Von Gutfeld, R. L. Melcher, “20-MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett. 33, 175–181 (1980).

M. Dubois, P. W. Lorraine, R. J. Filkins, T. E. Drake, “Experimental comparison between optical spectroscopy and laser-ultrasound generation in polymer-matrix composites,” Appl. Phys. Lett. 79, 1813–1815 (2001).
[CrossRef]

Electron. Lett. (1)

C. I. Swift, S. G. Pierce, B. Culshaw, “Laser generated ultrasound using directly coated fibre optic patchcords,” Electron. Lett. 36, 2113–2114 (2000).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

E. Biagi, F. Margheri, D. Menichelli, “Efficient laser ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
[CrossRef]

P. A. Lewin, R. Bhatia, Q. Zhang, J. M. Dodick, “Characterization of optoacoustic surgical devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 519–526 (1996).
[CrossRef]

J. Acoust. Soc. Am. (2)

D. A. Hutchins, R. J. Dewhurst, S. B. Palmer, “Directivity patterns of laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 70, 1362–1369 (1981).
[CrossRef]

K. L. Telschow, R. J. Conant, “Optical and thermal parameter effects on laser-generated ultrasound,” J. Acoust. Soc. Am. 88, 1494–1502 (1990).
[CrossRef]

J. Appl. Phys. (1)

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

J. Opt. (1)

D. Menichelli, E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. 3 (4), 23–31 (2001).

Lasers Surg. Med. (1)

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, T. V. Malinsky, “Studies of acoustical and shock-waves in the pulsed-laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
[CrossRef]

Mater. Sci. Eng. A (1)

S. Fassbender, B. Hoffmann, W. Arnold, “Efficient generation of acoustic pressure waves by short laser pulses,” Mater. Sci. Eng. A 122, 37–41 (1989).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

E. Biagi, M. Brenci, S. Fontani, L. Masotti, M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for nondestructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

I. G. Calasso, W. Craig, G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
[CrossRef] [PubMed]

Sens. Actuators A (1)

K. A. Roome, P. A. Payne, R. J. Dewhurst, “Towards a sideways looking intravascular laser-ultrasound probe,” Sens. Actuators A 76 (1–3), 197–202 (1999).

Ultrasonics (3)

Q. X. Chen, R. J. Dewhurst, P. A. Payne, B. Wood, “A new laser-ultrasound transducer for medical applications,” Ultrasonics 32, 309–313 (1994).
[CrossRef] [PubMed]

M. Oksanen, J. Wu, “Prediction of the temporal shape of an ultrasonic pulse in a photoacoustic sensing application,” Ultrasonics 32, 43–46 (1994).
[CrossRef]

R. J. Von Gutfeld, “Thermoelastic generation of elastic waves for non-destructive testing and medical applications,” Ultrasonics 18, 175–181 (1980).
[CrossRef] [PubMed]

Other (16)

A. J. De Maria, M. J. Brienza, “Laser induced acoustic generator,” U.S. patent3,532,181 (6October1970).

J. Krautkrämer, H. Krautkrämer, Ultrasonic Testing of Materials, 3rd ed. (Springer-Verlag, New York, 1983).
[CrossRef]

P. A. Fomitchov, Y. K. Kim, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

R. Erbel, ed., Intravascular Ultrasound (Martin Dunitz, London, 1998).

M. Dubois, P. W. Lorraine, B. Venchiarutti, A. S. Bauco, R. J. Filkins, T. E. Drake, K. R. Yawn, “Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.19A, 287–294 (2000).

C. Edwards, T. Stratoudaki, S. Dixon, S. B. Palmer, “Laser based ultrasound generation efficiency in carbon fibre reinforced composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.20A, 220–227 (2001).

P. A. Fomitchov, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, “Fiberized laser ultrasonic source for process monitoring and biomedical applications,” in Applications of Optical Fiber Sensors, A. J. Rogers, ed., Proc. SPIE4074, 127–134 (2000).
[CrossRef]

A. Dandridge, “Fiber optic sensors based on the Mach-Zehnder and Michelson interferometers,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 271–323.

C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, New York, 1990).

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 36–47 (2000).
[CrossRef]

E. V. Savateeva, A. A. Karabutov, M. Motamedi, B. Bell, R. Johnigan, A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE3916, 55–66 (2000).
[CrossRef]

J. M. Dodick, “Surgical instrument with input power transducer,” U.S. patent5,324,282 (28June1994).

W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent5,944,687 (31August1999).

F. S. Nikolaevich, K. V. Grigorievna, B. A. Vyacheslavovich, E. A. Viktorovich, A. J. Vladislavovich, “Device for removing cataracts,” U.S. patent6,322,557 (27November2001).

P. A. Fomitchov, A. Kromine, S. Krishnaswamy, J. D. Achenbach, U. K. Kim, I. M. Daniel, “Laser ultrasonic enabled ‘smart’ mold for composite parts manufacturing,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds., AIP Conf. Proc.20, 1802–1807 (2000).

D. L. Balageas, N. Jaroslavsky, M. Dupont, F. Lepoutre, “Ultrasound generation in composites via embedded optical fiber,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson, D. Chimenti, eds., AIP Conf. Proc.17, 691–698 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Principle of PAS operation.

Fig. 2
Fig. 2

Schematic of the measurement setup.

Fig. 3
Fig. 3

(a) Schematic of the axial PAS, (b) its directivity pattern, (c) typical ultrasonic signal, and (d) its spectrum.

Fig. 4
Fig. 4

(a) Schematic of the high-frequency axial PAS, (b) typical ultrasonic signal, and (c) its spectrum.

Fig. 5
Fig. 5

(a) Schematic of the angular PAS, (b) its directivity pattern, (c) typical ultrasonic signal, and (d) its spectrum.

Fig. 6
Fig. 6

(a) Schematic of the PAS for normal generation, (b) photograph of the PAS (with cover removed), (c) typical ultrasonic signal, and (d) radial directivity pattern.

Fig. 7
Fig. 7

(a) Schematic of the PAS for omnidirectional ultrasonic generation in a plane normal to the fiber axis and (b) radial plot of the ultrasonic amplitude.

Fig. 8
Fig. 8

(a) Schematic of the focused PAS, (b) ultrasonic beam profiles, (c) typical signal, and (d) its spectrum.

Fig. 9
Fig. 9

(a) Schematic of photoacoustic scanning probe, (b) a typical ultrasonic trace, (c) measured profile of a circular aluminum tube, and (d) measured profile of a ribbon tube with chalk.

Fig. 10
Fig. 10

(a) Schematic of multichannel photoacoustic scanning probe, (b) ultrasonic traces, and (c) measured profile of a circular aluminum tube.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L1-L2=τv,

Metrics