Abstract

The return signal frequency of an eye-safe ladar system is upconverted from the infrared to the visible through sum-frequency generation by incorporation of periodically poled LiNbO3 into the receiver. A quantitative analysis of the angular acceptance and the quantum efficiency is then presented for a single macroscopic receiver optic and a multiaperture microlens array. Comparing both results, a 6× increase in the receiver field of regard and an 18% increase in beam coupling were realized for the microlens design over the macroscopic system.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Dixon, “Periodically poled lithium niobate shines in the IR,” Laser Focus World 33, 105–111 (1997).
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, “Quasi-phase-matched optical parametric oscillators using bulk periodically poled lithium niobate,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  3. E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
    [CrossRef]
  4. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  5. C. D. Brewer, B. D. Duncan, P. S. Maciejewski, S. M. Kirkpatrick, E. A. Watson, “Space-bandwidth product enhancement of a monostatic, multiaperture infrared image upconversion ladar receiver incorporating periodically poled LiNbO3,” Appl. Opt. 41, 2251–2262 (2002).
    [CrossRef] [PubMed]
  6. R. A. Andrews, “IR image parametric upconversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
    [CrossRef]
  7. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  8. P. Gunter, Nonlinear Optical Effects and Materials (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  9. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995).
  11. M. Taya, M. C. Bashaw, M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
    [CrossRef] [PubMed]

2002 (1)

1997 (2)

G. J. Dixon, “Periodically poled lithium niobate shines in the IR,” Laser Focus World 33, 105–111 (1997).

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

1996 (1)

1995 (1)

1990 (1)

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

1970 (1)

R. A. Andrews, “IR image parametric upconversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995).

Andrews, R. A.

R. A. Andrews, “IR image parametric upconversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

Bashaw, M. C.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Brewer, C. D.

Byer, R. L.

Dixon, G. J.

G. J. Dixon, “Periodically poled lithium niobate shines in the IR,” Laser Focus World 33, 105–111 (1997).

Duncan, B. D.

Eckardt, R. C.

Fejer, M. M.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Gunter, P.

P. Gunter, Nonlinear Optical Effects and Materials (Springer-Verlag, Berlin, 2000).
[CrossRef]

Jundt, D. H.

Kirkpatrick, S. M.

Maciejewski, P. S.

Morris, G. M.

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

Myers, L. E.

Taya, M.

Watson, E. A.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. A. Andrews, “IR image parametric upconversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

J. Appl. Phys. (1)

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

G. J. Dixon, “Periodically poled lithium niobate shines in the IR,” Laser Focus World 33, 105–111 (1997).

Opt. Lett. (2)

Other (4)

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

P. Gunter, Nonlinear Optical Effects and Materials (Springer-Verlag, Berlin, 2000).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the increased receiver field of regard. Note that, for a single macroscopic lens of the same focal length, only the center portion of the crystal is used because of the SFG phase-matching angle θso.

Fig. 2
Fig. 2

Experimental setup for the OPO transmitter and the upconversion receiver. This setup was used for both the MLA and the macrolens measurements. HPF, high-pass filter; DM, dichroic mirror; WP, half-wave plate; FI, Faraday isolator; VA, variable attenuator; GF, green filter.

Fig. 3
Fig. 3

Experimental and theoretical angular acceptance for (a) the macroscopic upconversion receiver and (b) the MLA upconversion receiver. FOV, field of view.

Fig. 4
Fig. 4

Quantum efficiency comparison between the macroscopic and microlens receiver data and the theoretical predictions. (a) The SFG dependence on the signal energy for a fixed pump energy of 75 µJ. (b) The signal quantum efficiency calculated from Eq. (1).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ωsum=ωp+ωs,
Δk=kp+ks+kG-ksum,
ηup=Lc2κ2 sinc2gLc,
g=4π2|χeff2|2Ipλsλsumnsnsumnpc0+Δk241/2,
Ip=2Ppπwp2=2.84×4PpnpLcλp.
ηq=|UsumL|2/ωsum|Us0|2/ωsλsumλsEsumLEs0.

Metrics