Abstract

The design, development, and first measurements of a novel mesospheric temperature lidar are described. The lidar technique employs mesospheric Fe as a fluorescence tracer and relies on the temperature dependence of the population difference of two closely spaced Fe transitions. The principal advantage of this technique is that robust solid-state broadband laser source(s) can be used that enables the lidar to be deployed at remote locations and aboard research aircraft. We describe the system design and present a detailed analysis of the measurement errors. Correlative temperature observations, made with the Colorado State University Na lidar at Fort Collins, Colorado, are also discussed. Last, we present the initial range-resolved temperature measurements in the mesosphere and lower thermosphere over both the North and the South Poles obtained with this system.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Thomas, “Mesospheric clouds and the physics of the mesopause region,” Rev. Geophys. 29, 553–575 (1991).
    [CrossRef]
  2. C. S. Gardner, G. C. Papen, “Mesospheric Na wind/temperature lidar,” Laser Rev. 23, 131–134 (1995).
    [CrossRef]
  3. J. Sugar, C. Corliss, “Atomic energy levels of the iron-period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
  4. J. A. Gelbwachs, “Iron Boltzmann factor LIDAR: proposed new remote-sensing technique for mesospheric temperature,” Appl. Opt. 33, 7151–7156 (1994).
    [CrossRef] [PubMed]
  5. C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
    [CrossRef]
  6. J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities—iron through nickel,” J. Phys. Chem. Ref. Data 17, Suppl. 4 (1988).
  7. G. C. Papen, D. Treyer, “Comparison of an Fe Boltzmann temperature lidar with a Na narrow-band lidar,” Appl. Opt. 37, 8477–8481 (1998).
    [CrossRef]
  8. T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993).
    [CrossRef]
  9. X. Chu, W. Pan, G. Papen, C. S. Gardner, G. Swenson, P. Jenniskens, “Characteristics of Fe ablation trails observed during the 1998 Leonid meter shower,” Geophys. Res. Lett. 27, 1807–1810 (2000).
    [CrossRef]
  10. R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–115 km) at 40 °N latitude. Part I: Seasonal variations,” J. Geophys. Res. 57, 66–77 (2000).
  11. R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–115 km) at 40 °N latitude. Part II: Diurnal variations,” J. Geophys. Res. 57, 78–92 (2000).
  12. R. J. Rollason, J. M. C. Plane, “The reactions of FeO with O3, H2, H2O, O2, and CO2,” Phys. Chem. 2, 2335–2343 (2000).
  13. M. Helmer, J. M. C. Plane, J. Qian, C. S. Gardner, “A model of meteoric iron in the upper atmosphere,” J. Geophys. Res. 103, 10913–10926 (1998).
    [CrossRef]
  14. C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles, ” Geophys. Res. Lett. 28, 1199–1202 (2001).
    [CrossRef]
  15. X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: seasonal variations,” Geophys. Res. Lett. 28, 1203–1206 (2001).
    [CrossRef]
  16. X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: diurnal variations,” Geophys. Res. Lett. 28, 1937–1940 (2001).
    [CrossRef]
  17. J. W. Meriwether, P. D. Dao, R. T. McNutt, W. Klemetti, W. Moskowitz, G. Davidson, “Rayleigh lidar observations of mesosphere temperature structure,” J. Geophys. Res. 99, 16973–16988 (1994).
    [CrossRef]
  18. C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
    [CrossRef]
  19. X. Chu, A. Z. Liu, G. Papen, C. S. Gardner, M. Kelley, J. Drummond, R. Fugate, “Lidar observations of elevated temperatures in bright chemiluminescent meteor trails during the 1998 Leonid shower,” Geophys. Res. Lett. 27, 1815–1818 (2000).
    [CrossRef]
  20. U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
    [CrossRef]

2001 (3)

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles, ” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: seasonal variations,” Geophys. Res. Lett. 28, 1203–1206 (2001).
[CrossRef]

X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: diurnal variations,” Geophys. Res. Lett. 28, 1937–1940 (2001).
[CrossRef]

2000 (6)

X. Chu, W. Pan, G. Papen, C. S. Gardner, G. Swenson, P. Jenniskens, “Characteristics of Fe ablation trails observed during the 1998 Leonid meter shower,” Geophys. Res. Lett. 27, 1807–1810 (2000).
[CrossRef]

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–115 km) at 40 °N latitude. Part I: Seasonal variations,” J. Geophys. Res. 57, 66–77 (2000).

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–115 km) at 40 °N latitude. Part II: Diurnal variations,” J. Geophys. Res. 57, 78–92 (2000).

R. J. Rollason, J. M. C. Plane, “The reactions of FeO with O3, H2, H2O, O2, and CO2,” Phys. Chem. 2, 2335–2343 (2000).

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

X. Chu, A. Z. Liu, G. Papen, C. S. Gardner, M. Kelley, J. Drummond, R. Fugate, “Lidar observations of elevated temperatures in bright chemiluminescent meteor trails during the 1998 Leonid shower,” Geophys. Res. Lett. 27, 1815–1818 (2000).
[CrossRef]

1998 (2)

M. Helmer, J. M. C. Plane, J. Qian, C. S. Gardner, “A model of meteoric iron in the upper atmosphere,” J. Geophys. Res. 103, 10913–10926 (1998).
[CrossRef]

G. C. Papen, D. Treyer, “Comparison of an Fe Boltzmann temperature lidar with a Na narrow-band lidar,” Appl. Opt. 37, 8477–8481 (1998).
[CrossRef]

1996 (1)

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

1995 (1)

C. S. Gardner, G. C. Papen, “Mesospheric Na wind/temperature lidar,” Laser Rev. 23, 131–134 (1995).
[CrossRef]

1994 (2)

J. W. Meriwether, P. D. Dao, R. T. McNutt, W. Klemetti, W. Moskowitz, G. Davidson, “Rayleigh lidar observations of mesosphere temperature structure,” J. Geophys. Res. 99, 16973–16988 (1994).
[CrossRef]

J. A. Gelbwachs, “Iron Boltzmann factor LIDAR: proposed new remote-sensing technique for mesospheric temperature,” Appl. Opt. 33, 7151–7156 (1994).
[CrossRef] [PubMed]

1993 (1)

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993).
[CrossRef]

1991 (1)

G. E. Thomas, “Mesospheric clouds and the physics of the mesopause region,” Rev. Geophys. 29, 553–575 (1991).
[CrossRef]

1989 (1)

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[CrossRef]

1988 (1)

J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities—iron through nickel,” J. Phys. Chem. Ref. Data 17, Suppl. 4 (1988).

1985 (1)

J. Sugar, C. Corliss, “Atomic energy levels of the iron-period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Chen, S.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Chu, X.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles, ” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: seasonal variations,” Geophys. Res. Lett. 28, 1203–1206 (2001).
[CrossRef]

X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: diurnal variations,” Geophys. Res. Lett. 28, 1937–1940 (2001).
[CrossRef]

X. Chu, W. Pan, G. Papen, C. S. Gardner, G. Swenson, P. Jenniskens, “Characteristics of Fe ablation trails observed during the 1998 Leonid meter shower,” Geophys. Res. Lett. 27, 1807–1810 (2000).
[CrossRef]

X. Chu, A. Z. Liu, G. Papen, C. S. Gardner, M. Kelley, J. Drummond, R. Fugate, “Lidar observations of elevated temperatures in bright chemiluminescent meteor trails during the 1998 Leonid shower,” Geophys. Res. Lett. 27, 1815–1818 (2000).
[CrossRef]

Corliss, C.

J. Sugar, C. Corliss, “Atomic energy levels of the iron-period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Dao, P. D.

J. W. Meriwether, P. D. Dao, R. T. McNutt, W. Klemetti, W. Moskowitz, G. Davidson, “Rayleigh lidar observations of mesosphere temperature structure,” J. Geophys. Res. 99, 16973–16988 (1994).
[CrossRef]

Davidson, G.

J. W. Meriwether, P. D. Dao, R. T. McNutt, W. Klemetti, W. Moskowitz, G. Davidson, “Rayleigh lidar observations of mesosphere temperature structure,” J. Geophys. Res. 99, 16973–16988 (1994).
[CrossRef]

Drummond, J.

X. Chu, A. Z. Liu, G. Papen, C. S. Gardner, M. Kelley, J. Drummond, R. Fugate, “Lidar observations of elevated temperatures in bright chemiluminescent meteor trails during the 1998 Leonid shower,” Geophys. Res. Lett. 27, 1815–1818 (2000).
[CrossRef]

Fugate, R.

X. Chu, A. Z. Liu, G. Papen, C. S. Gardner, M. Kelley, J. Drummond, R. Fugate, “Lidar observations of elevated temperatures in bright chemiluminescent meteor trails during the 1998 Leonid shower,” Geophys. Res. Lett. 27, 1815–1818 (2000).
[CrossRef]

Fuhr, J. R.

J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities—iron through nickel,” J. Phys. Chem. Ref. Data 17, Suppl. 4 (1988).

Gardner, C. S.

X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: diurnal variations,” Geophys. Res. Lett. 28, 1937–1940 (2001).
[CrossRef]

X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: seasonal variations,” Geophys. Res. Lett. 28, 1203–1206 (2001).
[CrossRef]

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles, ” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

X. Chu, W. Pan, G. Papen, C. S. Gardner, G. Swenson, P. Jenniskens, “Characteristics of Fe ablation trails observed during the 1998 Leonid meter shower,” Geophys. Res. Lett. 27, 1807–1810 (2000).
[CrossRef]

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–115 km) at 40 °N latitude. Part I: Seasonal variations,” J. Geophys. Res. 57, 66–77 (2000).

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–115 km) at 40 °N latitude. Part II: Diurnal variations,” J. Geophys. Res. 57, 78–92 (2000).

X. Chu, A. Z. Liu, G. Papen, C. S. Gardner, M. Kelley, J. Drummond, R. Fugate, “Lidar observations of elevated temperatures in bright chemiluminescent meteor trails during the 1998 Leonid shower,” Geophys. Res. Lett. 27, 1815–1818 (2000).
[CrossRef]

M. Helmer, J. M. C. Plane, J. Qian, C. S. Gardner, “A model of meteoric iron in the upper atmosphere,” J. Geophys. Res. 103, 10913–10926 (1998).
[CrossRef]

C. S. Gardner, G. C. Papen, “Mesospheric Na wind/temperature lidar,” Laser Rev. 23, 131–134 (1995).
[CrossRef]

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993).
[CrossRef]

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[CrossRef]

Gelbwachs, J. A.

Helmer, M.

M. Helmer, J. M. C. Plane, J. Qian, C. S. Gardner, “A model of meteoric iron in the upper atmosphere,” J. Geophys. Res. 103, 10913–10926 (1998).
[CrossRef]

Höffner, J.

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

Hu, Z.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Jenniskens, P.

X. Chu, W. Pan, G. Papen, C. S. Gardner, G. Swenson, P. Jenniskens, “Characteristics of Fe ablation trails observed during the 1998 Leonid meter shower,” Geophys. Res. Lett. 27, 1807–1810 (2000).
[CrossRef]

Kane, T. J.

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993).
[CrossRef]

Kelley, M.

X. Chu, A. Z. Liu, G. Papen, C. S. Gardner, M. Kelley, J. Drummond, R. Fugate, “Lidar observations of elevated temperatures in bright chemiluminescent meteor trails during the 1998 Leonid shower,” Geophys. Res. Lett. 27, 1815–1818 (2000).
[CrossRef]

Klemetti, W.

J. W. Meriwether, P. D. Dao, R. T. McNutt, W. Klemetti, W. Moskowitz, G. Davidson, “Rayleigh lidar observations of mesosphere temperature structure,” J. Geophys. Res. 99, 16973–16988 (1994).
[CrossRef]

Krueger, D. A.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Liu, A. Z.

X. Chu, A. Z. Liu, G. Papen, C. S. Gardner, M. Kelley, J. Drummond, R. Fugate, “Lidar observations of elevated temperatures in bright chemiluminescent meteor trails during the 1998 Leonid shower,” Geophys. Res. Lett. 27, 1815–1818 (2000).
[CrossRef]

Martin, G. A.

J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities—iron through nickel,” J. Phys. Chem. Ref. Data 17, Suppl. 4 (1988).

McNutt, R. T.

J. W. Meriwether, P. D. Dao, R. T. McNutt, W. Klemetti, W. Moskowitz, G. Davidson, “Rayleigh lidar observations of mesosphere temperature structure,” J. Geophys. Res. 99, 16973–16988 (1994).
[CrossRef]

Meriwether, J. W.

J. W. Meriwether, P. D. Dao, R. T. McNutt, W. Klemetti, W. Moskowitz, G. Davidson, “Rayleigh lidar observations of mesosphere temperature structure,” J. Geophys. Res. 99, 16973–16988 (1994).
[CrossRef]

Moskowitz, W.

J. W. Meriwether, P. D. Dao, R. T. McNutt, W. Klemetti, W. Moskowitz, G. Davidson, “Rayleigh lidar observations of mesosphere temperature structure,” J. Geophys. Res. 99, 16973–16988 (1994).
[CrossRef]

Pan, W.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles, ” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

X. Chu, W. Pan, G. Papen, C. S. Gardner, G. Swenson, P. Jenniskens, “Characteristics of Fe ablation trails observed during the 1998 Leonid meter shower,” Geophys. Res. Lett. 27, 1807–1810 (2000).
[CrossRef]

Papen, G.

X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: seasonal variations,” Geophys. Res. Lett. 28, 1203–1206 (2001).
[CrossRef]

X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: diurnal variations,” Geophys. Res. Lett. 28, 1937–1940 (2001).
[CrossRef]

X. Chu, W. Pan, G. Papen, C. S. Gardner, G. Swenson, P. Jenniskens, “Characteristics of Fe ablation trails observed during the 1998 Leonid meter shower,” Geophys. Res. Lett. 27, 1807–1810 (2000).
[CrossRef]

X. Chu, A. Z. Liu, G. Papen, C. S. Gardner, M. Kelley, J. Drummond, R. Fugate, “Lidar observations of elevated temperatures in bright chemiluminescent meteor trails during the 1998 Leonid shower,” Geophys. Res. Lett. 27, 1815–1818 (2000).
[CrossRef]

Papen, G. C.

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles, ” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

G. C. Papen, D. Treyer, “Comparison of an Fe Boltzmann temperature lidar with a Na narrow-band lidar,” Appl. Opt. 37, 8477–8481 (1998).
[CrossRef]

C. S. Gardner, G. C. Papen, “Mesospheric Na wind/temperature lidar,” Laser Rev. 23, 131–134 (1995).
[CrossRef]

Plane, J. M. C.

R. J. Rollason, J. M. C. Plane, “The reactions of FeO with O3, H2, H2O, O2, and CO2,” Phys. Chem. 2, 2335–2343 (2000).

M. Helmer, J. M. C. Plane, J. Qian, C. S. Gardner, “A model of meteoric iron in the upper atmosphere,” J. Geophys. Res. 103, 10913–10926 (1998).
[CrossRef]

Qian, J.

M. Helmer, J. M. C. Plane, J. Qian, C. S. Gardner, “A model of meteoric iron in the upper atmosphere,” J. Geophys. Res. 103, 10913–10926 (1998).
[CrossRef]

Rollason, R. J.

R. J. Rollason, J. M. C. Plane, “The reactions of FeO with O3, H2, H2O, O2, and CO2,” Phys. Chem. 2, 2335–2343 (2000).

She, C. Y.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Sherman, J.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

States, R. J.

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–115 km) at 40 °N latitude. Part II: Diurnal variations,” J. Geophys. Res. 57, 78–92 (2000).

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–115 km) at 40 °N latitude. Part I: Seasonal variations,” J. Geophys. Res. 57, 66–77 (2000).

Sugar, J.

J. Sugar, C. Corliss, “Atomic energy levels of the iron-period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Swenson, G.

X. Chu, W. Pan, G. Papen, C. S. Gardner, G. Swenson, P. Jenniskens, “Characteristics of Fe ablation trails observed during the 1998 Leonid meter shower,” Geophys. Res. Lett. 27, 1807–1810 (2000).
[CrossRef]

Thomas, G. E.

G. E. Thomas, “Mesospheric clouds and the physics of the mesopause region,” Rev. Geophys. 29, 553–575 (1991).
[CrossRef]

Treyer, D.

Vance, J. D.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Vasoli, V.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

von Zahn, U.

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

White, M. A.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Wiese, W. L.

J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities—iron through nickel,” J. Phys. Chem. Ref. Data 17, Suppl. 4 (1988).

Yu, J.

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Appl. Opt. (2)

Geophys. Res. Lett. (7)

X. Chu, W. Pan, G. Papen, C. S. Gardner, G. Swenson, P. Jenniskens, “Characteristics of Fe ablation trails observed during the 1998 Leonid meter shower,” Geophys. Res. Lett. 27, 1807–1810 (2000).
[CrossRef]

C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles, ” Geophys. Res. Lett. 28, 1199–1202 (2001).
[CrossRef]

X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: seasonal variations,” Geophys. Res. Lett. 28, 1203–1206 (2001).
[CrossRef]

X. Chu, C. S. Gardner, G. Papen, “Lidar observations of polar mesospheric clouds at South Pole: diurnal variations,” Geophys. Res. Lett. 28, 1937–1940 (2001).
[CrossRef]

C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 ° W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

X. Chu, A. Z. Liu, G. Papen, C. S. Gardner, M. Kelley, J. Drummond, R. Fugate, “Lidar observations of elevated temperatures in bright chemiluminescent meteor trails during the 1998 Leonid shower,” Geophys. Res. Lett. 27, 1815–1818 (2000).
[CrossRef]

U. von Zahn, J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

J. Geophys. Res. (5)

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993).
[CrossRef]

M. Helmer, J. M. C. Plane, J. Qian, C. S. Gardner, “A model of meteoric iron in the upper atmosphere,” J. Geophys. Res. 103, 10913–10926 (1998).
[CrossRef]

J. W. Meriwether, P. D. Dao, R. T. McNutt, W. Klemetti, W. Moskowitz, G. Davidson, “Rayleigh lidar observations of mesosphere temperature structure,” J. Geophys. Res. 99, 16973–16988 (1994).
[CrossRef]

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–115 km) at 40 °N latitude. Part I: Seasonal variations,” J. Geophys. Res. 57, 66–77 (2000).

R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–115 km) at 40 °N latitude. Part II: Diurnal variations,” J. Geophys. Res. 57, 78–92 (2000).

J. Phys. Chem. Ref. Data (2)

J. Sugar, C. Corliss, “Atomic energy levels of the iron-period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities—iron through nickel,” J. Phys. Chem. Ref. Data 17, Suppl. 4 (1988).

Laser Rev. (1)

C. S. Gardner, G. C. Papen, “Mesospheric Na wind/temperature lidar,” Laser Rev. 23, 131–134 (1995).
[CrossRef]

Phys. Chem. (1)

R. J. Rollason, J. M. C. Plane, “The reactions of FeO with O3, H2, H2O, O2, and CO2,” Phys. Chem. 2, 2335–2343 (2000).

Proc. IEEE (1)

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[CrossRef]

Rev. Geophys. (1)

G. E. Thomas, “Mesospheric clouds and the physics of the mesopause region,” Rev. Geophys. 29, 553–575 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy-level diagram of atomic Fe used for the Boltzmann technique.

Fig. 2
Fig. 2

Diagram of the Fe Boltzmann temperature lidar system. LBO, lithium triborate crystal; PMT, photomultiplier tube.

Fig. 3
Fig. 3

Plot of the effective backscatter cross section spectrum for the Fe 372-nm line obtained by the scanning of the lidar frequency and observation of the returns from the mesospheric Fe layer.

Fig. 4
Fig. 4

Ground track of the 9 July 1999 flight path near Fort Collins and Broomfield, Colorado.

Fig. 5
Fig. 5

(a) Plots of the temperature profiles measured by the CSU Na lidar and the airborne Fe lidar on the early morning of 9 July 1999 along with the MSISE-00 model at (40.6 °N, 105 °W) at 630 UT. (b) Plots of the 372- and 374-nm ground-state Fe density profiles measured by the airborne Fe lidar.

Fig. 6
Fig. 6

(a) Temperature profiles measured by Fe Boltzmann temperature lidar over the North Pole on 21 June 1999 and over the South Pole on 24 December 2000 and 29 December 2000 along with MSISE-00 model data for 21 June 1999 at the North Pole. (b) The 372-nm ground-state Fe density profiles corresponding to the temperature profiles plotted in Fig. 6(a).

Fig. 7
Fig. 7

(a) Composite temperature profile measured over the South Pole on 8 May 2000 by use of balloon and Fe-Rayleigh lidar data along with the MSISE-00 model for 8 May 2000 at the South Pole. (b) Plots of the 372- and 374-nm ground-state Fe density profiles.

Tables (5)

Tables Icon

Table 1 Fe Resonance Line Parameters

Tables Icon

Table 2 System Parameters for Fe Boltzmann Temperature Lidar

Tables Icon

Table 3 Measured Cross Sections and Laser Parameters

Tables Icon

Table 4 Fe Boltzmann Lidar Error Budget for T = 200 K and σ L = 370 MHz

Tables Icon

Table 5 Fe Column Abundances for 372 and 374 nm

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

P374J=3P372J=4=ρFe374ρFe372=g2g1exp-ΔE/kBT,
T=ΔE/kBlng2g1ρFe372ρFe374.
NFeλ, z=PLΔtTahc/λ Eλ, z σeffλ, T, σLRBλ×ρFeλ, zΔzEλ, zTaAR4πz2 η,
NRλ, zR=PLΔtTahc/λσRλρatmoszRΔz×TaAR4πzR2 η,
σRλρatmoszR=1.370×10-30 ×273TzRPzR10131λ4.0117,
Nnormλ, z=NFeλ, z+NBλ, z- NˆBλNRλ, zR+ NBλ, zR- NˆBλ=zR2E2λ, zRBλσeffλ, T, σLρFeλ, zz2σRλρatmoszR,
RTz= Nnormλ374, zNnormλ372, z =g2g1RB374RB372λ374λ3724.0117E2λ374, zE2λ372, z×σeffλ374, T, σL374σeffλ372, T, σL372exp- ΔE/kBT =0.7221RE2zRσ exp-598.44/T,
REz= Eλ374, zEλ372, z,
Rσ=σeffλ374, T, σL374σeffλ372, T, σL372.
Tz=ΔE/kBlng2g1RB374RB372λ374λ3724.0117RE2zRσRTz=598.44ln0.7221RE2zRσRTzK.
ΔTrms=T2ΔE/kBΔRTRT2+ΔRσRσ21/ 2.
σeffλ, T, σL=σeffabsλ, T, σL.
σeffλ, T, Δν, σL= -+σabsν, λ0, T×gLν , λ, σLdν,
σeffλ, T, Δν, σL=12πσλe240mec fλ exp-Δν22σλ2,
σλ=σD2+σL2,
σD=1λkBTmFe1/2,
Rσ=0.9227 σ372σ374expΔν37222σ3722-Δν37422σ3742.
Rσ0.92701+σL3722-σL3742σλ21/2×expΔν3722-Δν37422σλ2, σL  σD0.92271+σL3722-σL3742σλ21/2×expΔν3722-Δν37422σλ2, σD  σL.
ΔRσRσ|Δν3722-Δν3742|2σλ22 σLσλ2ΔσLσLσLσλ2|σL372-σL374|σL.
ΔTrmsK±T22ΔE/kB|Δν3722-Δν3742|σλ2±2T2ΔE/kBσLσλ2ΔσLσL±T2ΔE/kBσLσλ2|σL372-σL374|σL.
ΔRσRσ=Δσeff372σeff3722+Δσeff374σeff37421/ 2.
RTNFe374, z+NB374, z- NˆB374NFe372, z+NB372, z- NˆB372.
ΔRTRT21/2 =1+1/RT1/ 2NFe372, z1/2×1+1+1/RT21+1/RT1SBR3721/2 5.6NFe372, z1/21+29SBR3721/2,
SBR372=NFe372, zNˆB372.
ΔTrmsK=±372NFe372, z1/21+29SBR3721/2.
±33 |Δν3722-Δν3742|σλ2
±95σLσλ2ΔσLσL
±67σLσλ2|σL372-σL374|σL
±372NFe372, z1/21+29SBR3721/2

Metrics