Abstract

Using ultraviolet femtosecond pulses with high irradiance stability, we measured the two-photon absorption (TPA) coefficients in a number of substances with a total accuracy of ∼10%. Six commercial fused-silica samples (KU-1, Corning 7940, SQ, Suprasil, Herasil, and Infrasil) possess TPA coefficients (β values) of ∼2 × 10-11 cm/W. For crystalline quartz and sapphire, the following β values were obtained: (1.2 ± 0.2) × 10-11 and (9.4 ± 1.2) × 10-11 cm/W, respectively. In β-barium borate crystal the TPA coefficient depends on crystal cut, beam polarization, or both and varies from (47 ± 5) × 10-11 to (68 ± 6) × 10-11 cm/W. For eight liquids that were studied (water, heavy water, ethanol, methanol, hexane, cyclohexane, 1,2-dichloroethane, and chloroform) the β value lies from (34 ± 3) × 10-11 to (95 ± 11) × 10-11 cm/W.

© 2002 Optical Society of America

Full Article  |  PDF Article

Corrections

Adrian Dragomir, John G. McInerney, and David N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at λ = 264 nm in glasses, crystals, and liquids: erratum," Appl. Opt. 41, 5655-5655 (2002)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-41-27-5655

References

  • View by:
  • |
  • |
  • |

  1. W. Kaiser, C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
    [CrossRef]
  2. M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. (Leipzig) 9, 273–295 (1931).
  3. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, Chichester, UK, 1997).
  4. G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption in potassium dihydrophosphate, potassium pentaborate and quartz crystals at 270 and 216 nm,” Int. J. Nonlin. Opt. Phys. 1, 533–540 (1992).
    [CrossRef]
  5. P. Liu, R. Yen, N. Bloembergen, “Two-photon absorption coefficients in UV window and coating materials,” Appl. Opt. 18, 1015–1018 (1979).
    [CrossRef] [PubMed]
  6. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4632 (1978).
    [CrossRef]
  7. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [CrossRef]
  8. K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
    [CrossRef]
  9. T. Tomie, I. Okuda, M. Yano, “Three-photon absorption in CaF2 at 248.5 nm,” Appl. Phys. Lett. 55, 325–327 (1989).
    [CrossRef]
  10. A. J. Taylor, R. B. Gibson, J. P. Roberts, “Two-photon absorption at 248 nm in ultraviolet window materials,” Opt. Lett. 13, 814–816 (1988).
    [CrossRef] [PubMed]
  11. P. Simon, H. Gerhardt, S. Shatmari, “Intensity-dependent loss properties of window materials at 248 nm,” Opt. Lett. 14, 1207–1209 (1989).
    [CrossRef] [PubMed]
  12. I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Coffey, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
    [CrossRef]
  13. E. Eva, K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).
    [CrossRef]
  14. R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
    [CrossRef]
  15. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
    [CrossRef] [PubMed]
  16. R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenter, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–467 (1995).
    [CrossRef]
  17. Yu. A. Repeyev, E. V. Khoroshilova, D. N. Nikogosyan, “212.8 nm laser photolysis of aromatic and aliphatic amino acids and related peptides,” J. Photochem. Photobiol. B 12, 259–274 (1992).
    [CrossRef] [PubMed]
  18. O. Kittelmann, J. Ringling, “Intensity-dependent transmission properties of window materials at 193-nm irradiation,” Opt. Lett. 19, 2053–2055 (1994).
    [CrossRef] [PubMed]
  19. “Twinkle, highly integrated pico/femtosecond CPA Nd:glass laser system,” http://www.lightcon.com .
  20. A. Umbrasas, J.-C. Diels, J. Jacob, G. Valiulis, A. Piskarskas, “Generation of femtosecond pulses through second-harmonic compression of the output of a Nd:YAG laser,” Opt. Lett. 20, 2228–2230 (1995).
    [CrossRef] [PubMed]
  21. A. Dubietis, G. Tamošauskas, A. Varanavičius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun. 186, 211–217 (2000).
    [CrossRef]
  22. G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
    [CrossRef]
  23. A. Dubietis, G. Tamošauskas, A. Varanavičius, G. Valiulis, R. Danielius, “Generation of femtosecond radiation at 211 nm by femtosecond pulse upconversion in the field of a picosecond pulse,” Opt. Lett. 25, 1116–1118 (2000).
    [CrossRef]
  24. J. Ní Chróinín, A. Dragomir, J. G. McInerney, D. N. Nikogosyan, “Accurate determination of two-photon absorption coefficients in fused silica and crystalline quartz at 264 nm,” Opt. Commun. 187, 185–191 (2001).
    [CrossRef]
  25. A. Dubietis, G. Timošauskas, A. Varanavičius, G. Valiulis, R. Danielius, “Highly efficient subpicosecond pulse generation at 211 nm,” J. Opt. Soc. Am. B 17, 48–52 (2000).
    [CrossRef]
  26. Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
    [CrossRef]
  27. A. Reuther, A. Laubereau, D. N. Nikogosyan, “A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions,” Opt. Commun. 141, 180–184 (1997).
    [CrossRef]
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes. The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 678–694.
  29. J. R. Taylor, An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements, 2nd ed. (University Science, Sausalito, Calif., 1997), pp. 173–179.
  30. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  31. “Quartz Glass for Optics. Data and Properties” (A datasheet from Heraeus Quartzglas GmbH, Hanan, Germany, 1994).
  32. R. B. Sosman, The Properties of Silica (Chemical Catalog Company, New York, 1927).
  33. I. H. Malitson, “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am. 52, 1377–1379 (1962).
    [CrossRef]
  34. A. Dubietis, G. Timošauskas, A. Varanavičius, G. Valiulis, “Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm,” Appl. Opt. 39, 2437–2440 (2000).
    [CrossRef]
  35. D. N. Nikogosyan, “Beta barium borate (BBO). A review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
    [CrossRef]
  36. K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-22, 1013–1014 (1986).
    [CrossRef]
  37. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
    [CrossRef]
  38. T. D. Krauss, J. K. Ranka, F. W. Wise, A. L. Gaeta, “Measurements of the tensor properties of third-order nonlinearities in wide-gap semiconductors,” Opt. Lett. 20, 1110–1112 (1995).
    [CrossRef] [PubMed]
  39. M. Dabbicco, I. M. Catalano, “Measurement of the anisotropy of the two-photon absorption coefficient in ZnSe near half the band gap,” Opt. Commun. 178, 117–121 (2000).
    [CrossRef]
  40. K. R. Allakhverdiev, Z. Yu. Salaeva, A. B. Orun, “Two-photon absorption in CdGa2S4 and CdGa2S3.96Se0.04 crystals,” Opt. Commun. 167, 95–98 (1999).
    [CrossRef]
  41. S. Pearl, S. Fastig, Y. Ehrlich, R. Lavi, “Limited efficiency of a silver selenogallate optical parametric oscillator caused by two-photon absorption,” Appl. Opt. 40, 2490–2492 (2001).
    [CrossRef]
  42. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), pp. 1–685.
  43. D. N. Nikogosyan, D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Dokl. Akad. Nauk SSSR 253, 733–734 (1980).
  44. D. N. Nikogosyan, D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Chem. Phys. Lett. 77, 208–210 (1981).
    [CrossRef]
  45. D. N. Nikogosyan, A. A. Oraevsky, V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation,” Chem. Phys. 77, 131–143 (1983).
    [CrossRef]
  46. A. Reuther, D. N. Nikogosyan, A. Laubereau, “Primary photochemical processes in thymine in concentrated aqueous solution studied by femtosecond UV spectroscopy,” J. Phys. Chem. 100, 5570–5577 (1996).
    [CrossRef]
  47. G. G. Gurzadyan, R. K. Ispiryan, “Nonlinear defocusing of a laser beam due to nonlinear absorption of radiation,” Opt. Spektrosk. 68, 1348–1351 (1990) [Opt. Spectrosc. (USSR) 68, 790–792 (1990)].
  48. Yu. A. Repeev, I. P. Terenetskaya, “Laser photosynthesis of previtamin D: new effects of high-intensity picosecond irradiation,” Kvantovaya Elektron. 23, 765–768 (1996) [Quantum Electron. 26, 746–749 (1996)].

2001 (2)

J. Ní Chróinín, A. Dragomir, J. G. McInerney, D. N. Nikogosyan, “Accurate determination of two-photon absorption coefficients in fused silica and crystalline quartz at 264 nm,” Opt. Commun. 187, 185–191 (2001).
[CrossRef]

S. Pearl, S. Fastig, Y. Ehrlich, R. Lavi, “Limited efficiency of a silver selenogallate optical parametric oscillator caused by two-photon absorption,” Appl. Opt. 40, 2490–2492 (2001).
[CrossRef]

2000 (5)

1999 (1)

K. R. Allakhverdiev, Z. Yu. Salaeva, A. B. Orun, “Two-photon absorption in CdGa2S4 and CdGa2S3.96Se0.04 crystals,” Opt. Commun. 167, 95–98 (1999).
[CrossRef]

1997 (2)

A. Reuther, A. Laubereau, D. N. Nikogosyan, “A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions,” Opt. Commun. 141, 180–184 (1997).
[CrossRef]

G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

1996 (4)

E. Eva, K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

A. Reuther, D. N. Nikogosyan, A. Laubereau, “Primary photochemical processes in thymine in concentrated aqueous solution studied by femtosecond UV spectroscopy,” J. Phys. Chem. 100, 5570–5577 (1996).
[CrossRef]

Yu. A. Repeev, I. P. Terenetskaya, “Laser photosynthesis of previtamin D: new effects of high-intensity picosecond irradiation,” Kvantovaya Elektron. 23, 765–768 (1996) [Quantum Electron. 26, 746–749 (1996)].

1995 (2)

1994 (1)

1993 (1)

1992 (2)

Yu. A. Repeyev, E. V. Khoroshilova, D. N. Nikogosyan, “212.8 nm laser photolysis of aromatic and aliphatic amino acids and related peptides,” J. Photochem. Photobiol. B 12, 259–274 (1992).
[CrossRef] [PubMed]

G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption in potassium dihydrophosphate, potassium pentaborate and quartz crystals at 270 and 216 nm,” Int. J. Nonlin. Opt. Phys. 1, 533–540 (1992).
[CrossRef]

1991 (1)

D. N. Nikogosyan, “Beta barium borate (BBO). A review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
[CrossRef]

1990 (3)

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[CrossRef]

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Coffey, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

G. G. Gurzadyan, R. K. Ispiryan, “Nonlinear defocusing of a laser beam due to nonlinear absorption of radiation,” Opt. Spektrosk. 68, 1348–1351 (1990) [Opt. Spectrosc. (USSR) 68, 790–792 (1990)].

1989 (4)

P. Simon, H. Gerhardt, S. Shatmari, “Intensity-dependent loss properties of window materials at 248 nm,” Opt. Lett. 14, 1207–1209 (1989).
[CrossRef] [PubMed]

R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

T. Tomie, I. Okuda, M. Yano, “Three-photon absorption in CaF2 at 248.5 nm,” Appl. Phys. Lett. 55, 325–327 (1989).
[CrossRef]

Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
[CrossRef]

1988 (2)

1986 (1)

K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-22, 1013–1014 (1986).
[CrossRef]

1983 (1)

D. N. Nikogosyan, A. A. Oraevsky, V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation,” Chem. Phys. 77, 131–143 (1983).
[CrossRef]

1981 (1)

D. N. Nikogosyan, D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Chem. Phys. Lett. 77, 208–210 (1981).
[CrossRef]

1980 (1)

D. N. Nikogosyan, D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Dokl. Akad. Nauk SSSR 253, 733–734 (1980).

1979 (1)

1978 (1)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4632 (1978).
[CrossRef]

1965 (1)

1962 (1)

1961 (1)

W. Kaiser, C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

1931 (1)

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. (Leipzig) 9, 273–295 (1931).

Adhav, R. S.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4632 (1978).
[CrossRef]

Allakhverdiev, K. R.

K. R. Allakhverdiev, Z. Yu. Salaeva, A. B. Orun, “Two-photon absorption in CdGa2S4 and CdGa2S3.96Se0.04 crystals,” Opt. Commun. 167, 95–98 (1999).
[CrossRef]

Angelov, D. A.

D. N. Nikogosyan, D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Chem. Phys. Lett. 77, 208–210 (1981).
[CrossRef]

D. N. Nikogosyan, D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Dokl. Akad. Nauk SSSR 253, 733–734 (1980).

Barr, J. R. M.

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Coffey, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

Bechtel, J. H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4632 (1978).
[CrossRef]

Bloembergen, N.

P. Liu, R. Yen, N. Bloembergen, “Two-photon absorption coefficients in UV window and coating materials,” Appl. Opt. 18, 1015–1018 (1979).
[CrossRef] [PubMed]

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4632 (1978).
[CrossRef]

Brimacombe, R. K.

R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef] [PubMed]

Catalano, I. M.

M. Dabbicco, I. M. Catalano, “Measurement of the anisotropy of the two-photon absorption coefficient in ZnSe near half the band gap,” Opt. Commun. 178, 117–121 (2000).
[CrossRef]

Coffey, I.

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Coffey, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

Dabbicco, M.

M. Dabbicco, I. M. Catalano, “Measurement of the anisotropy of the two-photon absorption coefficient in ZnSe near half the band gap,” Opt. Commun. 178, 117–121 (2000).
[CrossRef]

Danielius, R.

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
[CrossRef]

Diels, J.-C.

Dragomir, A.

J. Ní Chróinín, A. Dragomir, J. G. McInerney, D. N. Nikogosyan, “Accurate determination of two-photon absorption coefficients in fused silica and crystalline quartz at 264 nm,” Opt. Commun. 187, 185–191 (2001).
[CrossRef]

Dubietis, A.

Ehrlich, Y.

Eichner, L.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenter, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–467 (1995).
[CrossRef]

Eva, E.

E. Eva, K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).
[CrossRef]

Fastig, S.

Fladd, D.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenter, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–467 (1995).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes. The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 678–694.

Gaeta, A. L.

Garrett, C. G. B.

W. Kaiser, C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Gerhardt, H.

Gibson, R. B.

Göppert-Mayer, M.

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. (Leipzig) 9, 273–295 (1931).

Gurzadyan, G. G.

G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption in potassium dihydrophosphate, potassium pentaborate and quartz crystals at 270 and 216 nm,” Int. J. Nonlin. Opt. Phys. 1, 533–540 (1992).
[CrossRef]

G. G. Gurzadyan, R. K. Ispiryan, “Nonlinear defocusing of a laser beam due to nonlinear absorption of radiation,” Opt. Spektrosk. 68, 1348–1351 (1990) [Opt. Spectrosc. (USSR) 68, 790–792 (1990)].

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
[CrossRef]

Hata, K.

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[CrossRef]

Hooker, C. J.

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Coffey, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

Hutchinson, M. H. R.

Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
[CrossRef]

Ispiryan, R. K.

G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption in potassium dihydrophosphate, potassium pentaborate and quartz crystals at 270 and 216 nm,” Int. J. Nonlin. Opt. Phys. 1, 533–540 (1992).
[CrossRef]

G. G. Gurzadyan, R. K. Ispiryan, “Nonlinear defocusing of a laser beam due to nonlinear absorption of radiation,” Opt. Spektrosk. 68, 1348–1351 (1990) [Opt. Spectrosc. (USSR) 68, 790–792 (1990)].

Jacob, J.

Kaiser, W.

W. Kaiser, C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Kato, K.

K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-22, 1013–1014 (1986).
[CrossRef]

Khoroshilova, E. V.

Yu. A. Repeyev, E. V. Khoroshilova, D. N. Nikogosyan, “212.8 nm laser photolysis of aromatic and aliphatic amino acids and related peptides,” J. Photochem. Photobiol. B 12, 259–274 (1992).
[CrossRef] [PubMed]

Kim, Y. P.

Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
[CrossRef]

Kittelmann, O.

Krauss, T. D.

Laubereau, A.

A. Reuther, A. Laubereau, D. N. Nikogosyan, “A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions,” Opt. Commun. 141, 180–184 (1997).
[CrossRef]

A. Reuther, D. N. Nikogosyan, A. Laubereau, “Primary photochemical processes in thymine in concentrated aqueous solution studied by femtosecond UV spectroscopy,” J. Phys. Chem. 100, 5570–5577 (1996).
[CrossRef]

Lavi, R.

Leopold, K. E.

R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef] [PubMed]

Liu, P.

P. Liu, R. Yen, N. Bloembergen, “Two-photon absorption coefficients in UV window and coating materials,” Appl. Opt. 18, 1015–1018 (1979).
[CrossRef] [PubMed]

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4632 (1978).
[CrossRef]

Lotem, H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4632 (1978).
[CrossRef]

Malitson, I. H.

Mann, K.

E. Eva, K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).
[CrossRef]

McInerney, J. G.

J. Ní Chróinín, A. Dragomir, J. G. McInerney, D. N. Nikogosyan, “Accurate determination of two-photon absorption coefficients in fused silica and crystalline quartz at 264 nm,” Opt. Commun. 187, 185–191 (2001).
[CrossRef]

Mihailov, S.

Ní Chróinín, J.

J. Ní Chróinín, A. Dragomir, J. G. McInerney, D. N. Nikogosyan, “Accurate determination of two-photon absorption coefficients in fused silica and crystalline quartz at 264 nm,” Opt. Commun. 187, 185–191 (2001).
[CrossRef]

Nikogosyan, D. N.

J. Ní Chróinín, A. Dragomir, J. G. McInerney, D. N. Nikogosyan, “Accurate determination of two-photon absorption coefficients in fused silica and crystalline quartz at 264 nm,” Opt. Commun. 187, 185–191 (2001).
[CrossRef]

A. Reuther, A. Laubereau, D. N. Nikogosyan, “A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions,” Opt. Commun. 141, 180–184 (1997).
[CrossRef]

A. Reuther, D. N. Nikogosyan, A. Laubereau, “Primary photochemical processes in thymine in concentrated aqueous solution studied by femtosecond UV spectroscopy,” J. Phys. Chem. 100, 5570–5577 (1996).
[CrossRef]

Yu. A. Repeyev, E. V. Khoroshilova, D. N. Nikogosyan, “212.8 nm laser photolysis of aromatic and aliphatic amino acids and related peptides,” J. Photochem. Photobiol. B 12, 259–274 (1992).
[CrossRef] [PubMed]

D. N. Nikogosyan, “Beta barium borate (BBO). A review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
[CrossRef]

D. N. Nikogosyan, A. A. Oraevsky, V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation,” Chem. Phys. 77, 131–143 (1983).
[CrossRef]

D. N. Nikogosyan, D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Chem. Phys. Lett. 77, 208–210 (1981).
[CrossRef]

D. N. Nikogosyan, D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Dokl. Akad. Nauk SSSR 253, 733–734 (1980).

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, Chichester, UK, 1997).

Okuda, I.

T. Tomie, I. Okuda, M. Yano, “Three-photon absorption in CaF2 at 248.5 nm,” Appl. Phys. Lett. 55, 325–327 (1989).
[CrossRef]

Oldham, W. G.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenter, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–467 (1995).
[CrossRef]

Oraevsky, A. A.

D. N. Nikogosyan, A. A. Oraevsky, V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation,” Chem. Phys. 77, 131–143 (1983).
[CrossRef]

Orun, A. B.

K. R. Allakhverdiev, Z. Yu. Salaeva, A. B. Orun, “Two-photon absorption in CdGa2S4 and CdGa2S3.96Se0.04 crystals,” Opt. Commun. 167, 95–98 (1999).
[CrossRef]

Pearl, S.

Piskarskas, A.

Podenas, D.

G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes. The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 678–694.

Ranka, J. K.

Repeev, Yu. A.

Yu. A. Repeev, I. P. Terenetskaya, “Laser photosynthesis of previtamin D: new effects of high-intensity picosecond irradiation,” Kvantovaya Elektron. 23, 765–768 (1996) [Quantum Electron. 26, 746–749 (1996)].

Repeyev, Yu. A.

Yu. A. Repeyev, E. V. Khoroshilova, D. N. Nikogosyan, “212.8 nm laser photolysis of aromatic and aliphatic amino acids and related peptides,” J. Photochem. Photobiol. B 12, 259–274 (1992).
[CrossRef] [PubMed]

Reuther, A.

A. Reuther, A. Laubereau, D. N. Nikogosyan, “A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions,” Opt. Commun. 141, 180–184 (1997).
[CrossRef]

A. Reuther, D. N. Nikogosyan, A. Laubereau, “Primary photochemical processes in thymine in concentrated aqueous solution studied by femtosecond UV spectroscopy,” J. Phys. Chem. 100, 5570–5577 (1996).
[CrossRef]

Ringling, J.

Roberts, J. P.

Ross, I. N.

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Coffey, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

Rupasov, V. I.

D. N. Nikogosyan, A. A. Oraevsky, V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation,” Chem. Phys. 77, 131–143 (1983).
[CrossRef]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
[CrossRef]

Salaeva, Z. Yu.

K. R. Allakhverdiev, Z. Yu. Salaeva, A. B. Orun, “Two-photon absorption in CdGa2S4 and CdGa2S3.96Se0.04 crystals,” Opt. Commun. 167, 95–98 (1999).
[CrossRef]

Schenker, R.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenter, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–467 (1995).
[CrossRef]

Schermerhorn, P.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenter, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–467 (1995).
[CrossRef]

Shatmari, S.

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
[CrossRef]

Simon, P.

Smith, W. L.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4632 (1978).
[CrossRef]

Sosman, R. B.

R. B. Sosman, The Properties of Silica (Chemical Catalog Company, New York, 1927).

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), pp. 1–685.

Tamošauskas, G.

A. Dubietis, G. Tamošauskas, A. Varanavičius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun. 186, 211–217 (2000).
[CrossRef]

A. Dubietis, G. Tamošauskas, A. Varanavičius, G. Valiulis, R. Danielius, “Generation of femtosecond radiation at 211 nm by femtosecond pulse upconversion in the field of a picosecond pulse,” Opt. Lett. 25, 1116–1118 (2000).
[CrossRef]

G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Taylor, A. J.

Taylor, J. R.

J. R. Taylor, An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements, 2nd ed. (University Science, Sausalito, Calif., 1997), pp. 173–179.

Taylor, R. S.

R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef] [PubMed]

Terenetskaya, I. P.

Yu. A. Repeev, I. P. Terenetskaya, “Laser photosynthesis of previtamin D: new effects of high-intensity picosecond irradiation,” Kvantovaya Elektron. 23, 765–768 (1996) [Quantum Electron. 26, 746–749 (1996)].

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes. The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 678–694.

Timošauskas, G.

Tomie, T.

T. Tomie, I. Okuda, M. Yano, “Three-photon absorption in CaF2 at 248.5 nm,” Appl. Phys. Lett. 55, 325–327 (1989).
[CrossRef]

Toner, W. T.

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Coffey, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

Umbrasas, A.

Vaidya, H.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenter, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–467 (1995).
[CrossRef]

Vaidya, S.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenter, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–467 (1995).
[CrossRef]

Valiulis, G.

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
[CrossRef]

Varanavicius, A.

Veitas, G.

G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes. The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 678–694.

Watanabe, M.

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[CrossRef]

Watanabe, S.

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[CrossRef]

Wise, F. W.

Yano, M.

T. Tomie, I. Okuda, M. Yano, “Three-photon absorption in CaF2 at 248.5 nm,” Appl. Phys. Lett. 55, 325–327 (1989).
[CrossRef]

Yen, R.

Ann. Phys. (Leipzig) (1)

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. (Leipzig) 9, 273–295 (1931).

Appl. Opt. (4)

Appl. Phys. A (2)

D. N. Nikogosyan, “Beta barium borate (BBO). A review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
[CrossRef]

E. Eva, K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).
[CrossRef]

Appl. Phys. B (2)

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[CrossRef]

Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

T. Tomie, I. Okuda, M. Yano, “Three-photon absorption in CaF2 at 248.5 nm,” Appl. Phys. Lett. 55, 325–327 (1989).
[CrossRef]

Chem. Phys. (1)

D. N. Nikogosyan, A. A. Oraevsky, V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation,” Chem. Phys. 77, 131–143 (1983).
[CrossRef]

Chem. Phys. Lett. (1)

D. N. Nikogosyan, D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Chem. Phys. Lett. 77, 208–210 (1981).
[CrossRef]

Dokl. Akad. Nauk SSSR (1)

D. N. Nikogosyan, D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Dokl. Akad. Nauk SSSR 253, 733–734 (1980).

IEEE J. Quantum Electron. (2)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-22, 1013–1014 (1986).
[CrossRef]

Int. J. Nonlin. Opt. Phys. (1)

G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption in potassium dihydrophosphate, potassium pentaborate and quartz crystals at 270 and 216 nm,” Int. J. Nonlin. Opt. Phys. 1, 533–540 (1992).
[CrossRef]

J. Appl. Phys. (1)

R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

J. Mod. Opt. (1)

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Coffey, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. B (1)

Yu. A. Repeyev, E. V. Khoroshilova, D. N. Nikogosyan, “212.8 nm laser photolysis of aromatic and aliphatic amino acids and related peptides,” J. Photochem. Photobiol. B 12, 259–274 (1992).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

A. Reuther, D. N. Nikogosyan, A. Laubereau, “Primary photochemical processes in thymine in concentrated aqueous solution studied by femtosecond UV spectroscopy,” J. Phys. Chem. 100, 5570–5577 (1996).
[CrossRef]

Kvantovaya Elektron. (1)

Yu. A. Repeev, I. P. Terenetskaya, “Laser photosynthesis of previtamin D: new effects of high-intensity picosecond irradiation,” Kvantovaya Elektron. 23, 765–768 (1996) [Quantum Electron. 26, 746–749 (1996)].

Opt. Commun. (6)

M. Dabbicco, I. M. Catalano, “Measurement of the anisotropy of the two-photon absorption coefficient in ZnSe near half the band gap,” Opt. Commun. 178, 117–121 (2000).
[CrossRef]

K. R. Allakhverdiev, Z. Yu. Salaeva, A. B. Orun, “Two-photon absorption in CdGa2S4 and CdGa2S3.96Se0.04 crystals,” Opt. Commun. 167, 95–98 (1999).
[CrossRef]

A. Dubietis, G. Tamošauskas, A. Varanavičius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun. 186, 211–217 (2000).
[CrossRef]

G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

A. Reuther, A. Laubereau, D. N. Nikogosyan, “A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions,” Opt. Commun. 141, 180–184 (1997).
[CrossRef]

J. Ní Chróinín, A. Dragomir, J. G. McInerney, D. N. Nikogosyan, “Accurate determination of two-photon absorption coefficients in fused silica and crystalline quartz at 264 nm,” Opt. Commun. 187, 185–191 (2001).
[CrossRef]

Opt. Lett. (7)

Opt. Spektrosk. (1)

G. G. Gurzadyan, R. K. Ispiryan, “Nonlinear defocusing of a laser beam due to nonlinear absorption of radiation,” Opt. Spektrosk. 68, 1348–1351 (1990) [Opt. Spectrosc. (USSR) 68, 790–792 (1990)].

Phys. Rev. B (1)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4632 (1978).
[CrossRef]

Phys. Rev. Lett. (1)

W. Kaiser, C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Other (8)

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, Chichester, UK, 1997).

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenter, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–467 (1995).
[CrossRef]

“Twinkle, highly integrated pico/femtosecond CPA Nd:glass laser system,” http://www.lightcon.com .

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes. The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 678–694.

J. R. Taylor, An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements, 2nd ed. (University Science, Sausalito, Calif., 1997), pp. 173–179.

“Quartz Glass for Optics. Data and Properties” (A datasheet from Heraeus Quartzglas GmbH, Hanan, Germany, 1994).

R. B. Sosman, The Properties of Silica (Chemical Catalog Company, New York, 1927).

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), pp. 1–685.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the experimental setup. The sample was gradually moved along the laser beam well away from the focal point.

Fig. 2
Fig. 2

Schematic of TPA-based autocorrelation setup. F93, F45.4 are the focal lengths of the lenses, in cm.

Fig. 3
Fig. 3

Top, typical autocorrelation curve of a UV laser pulse (absorbance of a thin fused-silica sample versus the delay time between the pump and probe pulses). Solid curve, a Gaussian fit to the measured data according to Eq. (13) for the parameters A 0 = 0.18, t max = 974 ± 2 fs, τ = 204.5 ± 0.3 fs, P 1 = (43.9 ± 1.4) × 10-3 fs-1, and P 2 = (53.8 ± 0.9) × 10-3. Bottom, absolute deviation Δ between calculated and measured values to demonstrate the validity of the fit.

Fig. 4
Fig. 4

Typical curves of transmittance versus irradiance for six samples of fused silica. The fit gave the following values for TPA coefficients [10-11 cm/W]: 2.50 (fused silica KU-1), 2.01 (Corning 7940), 1.92 (fused silica SQ), 1.58 (Suprasil), 1.61 (Herasil), 2.22 (Infrasil).

Fig. 5
Fig. 5

Typical curves of transmittance versus irradiance for crystalline quartz and sapphire. The fit gave the following values for TPA coefficients [10-11 cm/W]: 1.06 (crystalline quartz), 10.3 (sapphire).

Fig. 6
Fig. 6

Typical curves of transmittance versus irradiance for BBO crystal. The fit gave the following values for TPA coefficients [10-11 cm/W]: 72.8 (z cut), 71.6 (x cut, ordinary polarization), 45.0 (x cut, extraordinary polarization).

Fig. 7
Fig. 7

Typical curves of transmittance versus irradiance for eight liquids. The fit gave the following values for TPA coefficients [10-11 cm/W]: 35.0 (MeOH), 43.9 (EtOH), 51.8 (D2O), 50.7 (H2O), 46.8 (cyclohexane), 52.5 (hexane), 88.5 (1,2-dichloroethane), 99.9 (chloroform).

Fig. 8
Fig. 8

TPA coefficients as a function of density and molecular mass of the eight liquids investigated. The error bars represent total uncertainties.

Fig. 9
Fig. 9

Dependence of TPA cross section per molecule versus the corresponding molecular mass.

Tables (10)

Tables Icon

Table 1 TPA Coefficients of Fused Silica Measured at Several Wavelengths

Tables Icon

Table 2 Parameters of Glass Samples at λ = 264 nm

Tables Icon

Table 3 Experimental Data on β and α Values for Fused-Silica Glasses at 264 nma

Tables Icon

Table 4 Parameters of Crystal Samples at λ = 264 nma

Tables Icon

Table 5 Experimental Results on β and α Values for Crystalline Quartz and Sapphire at 264 nma

Tables Icon

Table 6 Literature Data for TPA Coefficient in Crystals

Tables Icon

Table 7 Experimental Data on β Values for BBO at 264 nma

Tables Icon

Table 8 Parameters of Liquid Samples at λ = 264 nm

Tables Icon

Table 9 Experimental Values on β Values for Liquids at 264 nma

Tables Icon

Table 10 Literature Data for TPA Coefficients in Liquids

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Iincr, t=I0 exp-2r/w02exp-2t/τp2,
ε0=-+dt 0+ Iincr, t2πrdr=ππ/4I0τpw02.
Il=Iinc1-R2 exp-αl1+β/αIinc1-R1-exp-αl,
R=n-1n+12
εtr=-+dt 0+ Ilr, t2πrdr=ε0α1-Rexp-αlπ βI01-exp-αl-+ln1+βα I01-R×1-exp-αlexp-k2dk,
T=εtrε0=αT0π βI01-R1-exp-αl×-+ln1+βα I01-R×1-exp-αlexp-k2dk,
T0=1-R2 exp-αl
T=εtrε0=αT0π βI01-R*1-r1-exp-αlls×-+ln1+βα I01-R*1-r×1-exp-αllsexp-k2dk.
R*=ncw-1ncw+12
r=ncw-nlsncw+nls2
T0=1-R*21-r2 exp-αl
TI0  0=εtrε0=T01-βI01-R1-exp-αl22 α,
β=22αdT/dI01-R1-exp-αlT0.
β=22dT/dI0l1-RT0.
I0*=I0F-SF-l2nF-2,
nm=nlslls+2ncwlcwlls+2lcw,
w0=d2 ln1-A-1,
Afitt=A0 exp-t-tmaxτ2+P1t+P2.
Δβ=βΔll2+ΔII21/2=βΔll2+ΔAA2+Δτpτp2+2Δww21/2,
σ2=hνβN=hνβMNAρ,

Metrics