Abstract

The operation of a room-temperature, continuous-wave, intracavity frequency-doubled Cr4+:forsterite laser capable of producing broadly tunable output in the orange-red region of the electromagnetic spectrum is described. Intracavity doubling was achieved in a periodically poled lithium niobate crystal that had gratings with different periods. Tunable second-harmonic output could be obtained between 613 and 655 nm. At a wavelength of 630 nm, intracavity doubling yielded as much as 45 mW of continuous-wave output. To the author’s knowledge, this represents the highest second-harmonic-power generation obtained to date with a continuous-wave Cr4+:forsterite laser.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
    [CrossRef]
  2. W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace, “2.5 W, continuous wave, 629 nm solid-state laser source,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 68–71.
  3. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 micron and 605–635 nanometer wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
    [CrossRef]
  4. V. P. Yanovsky, F. W. Wise, “Frequency doubling of 100-fs pulses with 50% efficiency by use of a resonant enhancement cavity,” Opt. Lett. 19, 1952–1954 (1994).
    [CrossRef] [PubMed]
  5. X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
    [CrossRef]
  6. J. M. Evans, V. Petricevic, R. R. Alfano, Q. Fu, “Kilohertz Cr:forsterite regenerative amplifier,” Opt. Lett. 23, 1692–1694 (1998).
    [CrossRef]
  7. T.-M. Liu, S.-P. Tai, C.-K. Sun, “Intracavity frequency-doubled femtosecond Cr4+:forsterite laser,” Appl. Opt. 40, 1957–1960 (2001).
    [CrossRef]
  8. I. T. McKinnie, A. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
    [CrossRef]
  9. S. M. Giffin, I. T. McKinnie, “Tunable visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite in KTP,” Opt. Lett. 24, 884–886 (1999).
    [CrossRef]
  10. N. Zhavoronkov, V. Petrov, F. Noack, “Powerful and tunable operation of a 1-2-kHz repetition-rate gain-switched Cr:forsterite laser and its frequency doubling,” Appl. Opt. 38, 3285–3293 (1999).
    [CrossRef]
  11. J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
    [CrossRef]
  12. A. Sennaroglu, “Optimum crystal parameters for room-temperature Cr4+:forsterite lasers: experiment and theory,” Opt. Commun. 174, 215–222 (2000).
    [CrossRef]
  13. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  14. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  15. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  16. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  17. D. R. Preuss, J. L. Gole, “Three-stage birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design,” Appl. Opt. 19, 702–710 (1980).
    [CrossRef] [PubMed]

2001 (1)

2000 (1)

A. Sennaroglu, “Optimum crystal parameters for room-temperature Cr4+:forsterite lasers: experiment and theory,” Opt. Commun. 174, 215–222 (2000).
[CrossRef]

1999 (3)

1998 (1)

1997 (4)

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

I. T. McKinnie, A. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

1994 (3)

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 micron and 605–635 nanometer wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

V. P. Yanovsky, F. W. Wise, “Frequency doubling of 100-fs pulses with 50% efficiency by use of a resonant enhancement cavity,” Opt. Lett. 19, 1952–1954 (1994).
[CrossRef] [PubMed]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1980 (1)

1968 (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Alexander, J. I.

W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace, “2.5 W, continuous wave, 629 nm solid-state laser source,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 68–71.

Alfano, R. R.

Bosenberg, W. R.

W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace, “2.5 W, continuous wave, 629 nm solid-state laser source,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 68–71.

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Diettrich, J. C.

J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
[CrossRef]

Esterowitz, L.

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

Evans, J. M.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Fu, Q.

Giffin, S. M.

Gole, J. L.

Ito, R.

Jundt, D. H.

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kitamoto, A.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Kokta, M.

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

Kondo, T.

Liu, T.-M.

Liu, X.

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

McKinnie, I. T.

J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
[CrossRef]

S. M. Giffin, I. T. McKinnie, “Tunable visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite in KTP,” Opt. Lett. 24, 884–886 (1999).
[CrossRef]

I. T. McKinnie, A. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

Myers, L. E.

W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace, “2.5 W, continuous wave, 629 nm solid-state laser source,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 68–71.

Nathel, H.

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 micron and 605–635 nanometer wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Noack, F.

Oien, A. L.

I. T. McKinnie, A. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

Peressini, D.

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

Petricevic, V.

Petrov, V.

Pinto, J. F.

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

Pollock, C. R.

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 micron and 605–635 nanometer wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Preuss, D. R.

Qian, L.

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

Rosenblatt, G. H.

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

Sennaroglu, A.

A. Sennaroglu, “Optimum crystal parameters for room-temperature Cr4+:forsterite lasers: experiment and theory,” Opt. Commun. 174, 215–222 (2000).
[CrossRef]

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 micron and 605–635 nanometer wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Shirane, M.

Shoji, I.

Sun, C.-K.

Tai, S.-P.

Wallace, R. W.

W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace, “2.5 W, continuous wave, 629 nm solid-state laser source,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 68–71.

Warrington, D. M.

J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
[CrossRef]

Wise, F. W.

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

V. P. Yanovsky, F. W. Wise, “Frequency doubling of 100-fs pulses with 50% efficiency by use of a resonant enhancement cavity,” Opt. Lett. 19, 1952–1954 (1994).
[CrossRef] [PubMed]

Yanovsky, V. P.

Zhavoronkov, N.

Appl. Opt. (3)

IEEE J. Quantum Electron. (4)

J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 micron and 605–635 nanometer wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

A. Sennaroglu, “Optimum crystal parameters for room-temperature Cr4+:forsterite lasers: experiment and theory,” Opt. Commun. 174, 215–222 (2000).
[CrossRef]

I. T. McKinnie, A. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

Opt. Lett. (4)

Other (1)

W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace, “2.5 W, continuous wave, 629 nm solid-state laser source,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 68–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the intracavity frequency-doubled Cr4+:forsterite laser.

Fig. 2
Fig. 2

Power efficiency curves at the fundamental and second-harmonic wavelengths of 1260 and 630 nm.

Fig. 3
Fig. 3

Tuning curve of the intracavity frequency-doubled Cr4+:forsterite laser.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P2ωPω=16π2λ03 η0deff2nω2n2ω LhmB, ξPωGλ0,
deff=2d33π
ξ=Lλ02nωπω02,

Metrics