Abstract

Absorption in the phase-change layer of an optical disk located in the near field of a Fabry-Perot laser diode is studied with a combination of finite-difference time domain (FDTD) analysis and a phenomenological laser model that predicts the operational characteristics of a laser diode. Some numerical simulations are performed and results are presented. In addition, the combined FDTD/laser-simulation model is described briefly.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ukita, Y. Katagiri, S. Fujimoro, “Supersmall flying optical head for phase change recording media,” Appl. Opt. 28, 4360–4365 (1989).
    [CrossRef] [PubMed]
  2. J. Aikio, D. Howe, “Direct semiconductor laser readout in optical data storage,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 56–65 (2000).
    [CrossRef]
  3. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).
  4. J. B. Judkins, C. W. Haggans, R. W. Ziolkowski, “Two-dimensional finite-difference-time-domain simulation for rewritable optical disk surface structure,” Appl. Opt. 35, 2477–2487 (1996).
    [CrossRef] [PubMed]
  5. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, New York, 1995).
  6. M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters Volume 2: Ternary and Quaternary A3B5 Semiconductors (World Scientific, Singapre, 1999).
  7. M. Okoniewski, M. Mrozowski, M. A. Stuchly, “Simple Treatment of Multi-Term Dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997).
    [CrossRef]
  8. J.-Y. Kim, H. C. Hsieh, “An open-resonator model for the analysis of a short external-cavity laser diode and its application to the disk head,” J. Lightwave Technol. 10, 439–447 (1992).
    [CrossRef]
  9. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
    [CrossRef]

1999 (1)

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

1997 (1)

M. Okoniewski, M. Mrozowski, M. A. Stuchly, “Simple Treatment of Multi-Term Dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997).
[CrossRef]

1996 (1)

1992 (1)

J.-Y. Kim, H. C. Hsieh, “An open-resonator model for the analysis of a short external-cavity laser diode and its application to the disk head,” J. Lightwave Technol. 10, 439–447 (1992).
[CrossRef]

1989 (1)

Aikio, J.

J. Aikio, D. Howe, “Direct semiconductor laser readout in optical data storage,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 56–65 (2000).
[CrossRef]

Baldwin, K.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Chichester, R.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, New York, 1995).

Corzine, S. W.

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, New York, 1995).

Dhar, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Fujimoro, S.

Haggans, C. W.

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

Hobson, W. S.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Hopkins, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Howe, D.

J. Aikio, D. Howe, “Direct semiconductor laser readout in optical data storage,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 56–65 (2000).
[CrossRef]

Hsieh, H. C.

J.-Y. Kim, H. C. Hsieh, “An open-resonator model for the analysis of a short external-cavity laser diode and its application to the disk head,” J. Lightwave Technol. 10, 439–447 (1992).
[CrossRef]

Judkins, J. B.

Katagiri, Y.

Kim, J.-Y.

J.-Y. Kim, H. C. Hsieh, “An open-resonator model for the analysis of a short external-cavity laser diode and its application to the disk head,” J. Lightwave Technol. 10, 439–447 (1992).
[CrossRef]

Levinshtein, M.

M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters Volume 2: Ternary and Quaternary A3B5 Semiconductors (World Scientific, Singapre, 1999).

Lopata, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Mrozowski, M.

M. Okoniewski, M. Mrozowski, M. A. Stuchly, “Simple Treatment of Multi-Term Dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997).
[CrossRef]

Murray, C. A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Okoniewski, M.

M. Okoniewski, M. Mrozowski, M. A. Stuchly, “Simple Treatment of Multi-Term Dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997).
[CrossRef]

Partovi, A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Peale, D.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Rumyantsev, S.

M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters Volume 2: Ternary and Quaternary A3B5 Semiconductors (World Scientific, Singapre, 1999).

Shur, M.

M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters Volume 2: Ternary and Quaternary A3B5 Semiconductors (World Scientific, Singapre, 1999).

Stuchly, M. A.

M. Okoniewski, M. Mrozowski, M. A. Stuchly, “Simple Treatment of Multi-Term Dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997).
[CrossRef]

Taflove, A.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

Ukita, H.

Wuttig, M.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Wynn, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Yeh, J. H.-J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Ziolkowski, R. W.

Zydzik, G.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

IEEE Microwave Guid. Wave Lett. (1)

M. Okoniewski, M. Mrozowski, M. A. Stuchly, “Simple Treatment of Multi-Term Dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J.-Y. Kim, H. C. Hsieh, “An open-resonator model for the analysis of a short external-cavity laser diode and its application to the disk head,” J. Lightwave Technol. 10, 439–447 (1992).
[CrossRef]

Other (4)

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, New York, 1995).

M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters Volume 2: Ternary and Quaternary A3B5 Semiconductors (World Scientific, Singapre, 1999).

J. Aikio, D. Howe, “Direct semiconductor laser readout in optical data storage,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 56–65 (2000).
[CrossRef]

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Simulated system, the laser waveguide is in middle portion of the left-hand side. In addition to the laser-end on the left, from left to right there is an airgap, disk cover layer, PC layer, insulating layer, and aluminum layer. Thicknesses of the airgap, cover layer, PC layer, insulating layer are 200, 130, 20, and 24 nm, respectively.

Fig. 2
Fig. 2

Electric-field amplitude in steady state. Thicknesses are the same as in Fig. 1.

Fig. 3
Fig. 3

Absorption profile in the PC layer when thicknesses are the same as in Fig. 1.

Fig. 4
Fig. 4

Transversal-absorption profile in the phase-change layer as a function of airgap thickness. Cover layer, PC layer, and insulating layer thicknesses are 100, 20, and 20 nm, respectively.

Fig. 5
Fig. 5

Longitudinal absorption profile in the phase-change layer as a function of airgap thickness. Thicknesses are the same as in Fig. 4.

Fig. 6
Fig. 6

Open circles, total laser output power; open triangles, total absorption in the PC layer; asterisks, output power from the back facet; points, scattered power in the ESEC as a function of the airgap thickness. Cover layer, PC layer, and insulating layer thicknesses are 100, 20, and 20 nm, respectively.

Fig. 7
Fig. 7

Absorption profile spot size FWHM as a function of the airgap thickness. Cover layer, PC layer and insulating layer thicknesses are 100, 20 and 20 nm respectively.

Fig. 8
Fig. 8

Symbols are the same as in Fig. 6. Airgap, cover layer, and PC layer thicknesses are 100, 85 and 20 nm respectively.

Fig. 9
Fig. 9

Absorption profile spot size FWHM as a function of the insulating layer thickness. Airgap, cover layer and PC layer thicknesses are 100, 85 and 20 nm respectively.

Fig. 10
Fig. 10

Longitudinal absorption profiles as a function of the insulating layer thickness. Airgap, cover layer and PC layer thicknesses are 100, 85 and 20 nm respectively.

Fig. 11
Fig. 11

Symbols are the same as in Fig. 6. Airgap, PC layer and insulating layer thicknesses are 100, 20 and 24 nm, respectively.

Fig. 12
Fig. 12

Absorption profile FWHM as a function of the cover layer thickness. Airgap, PC layer and insulating layer thicknesses are 100, 20, and 24 nm respectively.

Tables (2)

Tables Icon

Table 1 Material Properties and Layer Thicknesses Used in the Simulationsa

Tables Icon

Table 2 Laser Parameters Used in and Obtained from Modelinga

Metrics