Abstract

We demonstrate a computationally efficient procedure for determining only the semiconductor sites in a confocal reflectance image of an integrated circuit. It utilizes a one-photon optical beam-induced current (1P-OBIC) and confocal reflectance images that are generated from the same focused excitation beam. A 1P-OBIC image is a two-dimensional map of the currents induced by the beam as it is scanned across the circuit surface. A 1P-OBIC is produced by an illuminated semiconductor material if the excitation photon energy exceeds the bandgap. The 1P-OBIC image has no vertical resolution because the 1P-OBIC is linear with the excitation beam intensity. The exclusive high-contrast image of semiconductor sites is generated by the product of the 1P-OBIC image and the confocal image. High-contrast images of the metal sites are also obtained by the product of the complementary OBIC image and the same confocal image.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. P. Richards, P. K. Footner, The Role of Microscopy in Semiconductor Failure Analysis (Oxford U. Press, New York, 1992).
  2. S. Takasu, “Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis),” JEOL News 36E, 60–63 (2001).
  3. A. Ribes, S. Damaskinos, H. Tiedje, A. Dixon, D. Brodie, “Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning MACROscope/microscope,” Sol. Energy Mater. Sol. Cells 44, 439–450 (1996).
    [CrossRef]
  4. T. Koyama, K. Sonoda, J. Komori, Y. Mashiko, M. Umeno, “Detection of defects in metal interconnects by the nonbias-optical beam induced current technique,” J. Appl. Phys. 86, 5949–5956 (1999).
    [CrossRef]
  5. C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997).
    [CrossRef]
  6. K. Isoird, M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson, J. P. Chante, “Study of 6H-SiC high voltage bipolar diodes under reverse biases,” Appl. Surf. Sci. 184, 477–482 (2001).
    [CrossRef]
  7. T. Koyama, M. Umeno, J. Komori, Y. Mashiko, “Evaluation of sliced morphology by near-infrared-laser optical-beam-induced-current technique,” Jpn. J. Appl. Phys. 40, 6446–6452 (2001).
    [CrossRef]
  8. D. Pogany, K. Esmark, M. Litzenberger, C. Furbock, H. Gossner, E. Gornik, “Bulk and surface degradation mode in 0.35 micron technology gg-nMOS ESD protection devices,” Microelectron. Reliab. 40, 1467–1472 (2000).
    [CrossRef]
  9. G. Soelkner, J. Kreutle, J. Quincke, W. Kaindl, G. Wachutka, “Back side optical beam induced current method for the localization of electric field enhancements in edge termination structures of power semiconductor devices,” Microelectron. Reliab. 40, 1641–1645 (2000).
    [CrossRef]
  10. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  11. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  12. C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
    [CrossRef]
  13. F. J. Kao, M. K. Huang, Y. S. Wang, S. L. Huang, M. K. Lee, C. K. Sun, “Two-photon optical-beam-induced current imaging of indium gallium nitride blue light-emitting diodes,” Opt. Lett. 24, 1407–1409 (1999).
    [CrossRef]
  14. M. Unlu, B. Goldberg, W. Herzog, D. Sun, E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
    [CrossRef]
  15. R. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966).
  16. C. Blanca, C. Saloma, “Monte-Carlo analysis of two-photon imaging through a scattering medium,” Appl. Opt. 37, 8092–8102 (1998).
    [CrossRef]
  17. C. Saloma, C. Palmes-Saloma, H. Kondoh, “Site-specific confocal fluorescence imaging of biological microstructures in turbid medium,” Phys. Med. Biol. 43, 1741–1759 (1998).
    [CrossRef] [PubMed]
  18. C. Palmes-Saloma, C. Saloma, “Long-depth imaging of specific gene expressions in wholemount mouse embryos with single photon excitation confocal fluorescence microscope and FISH,” J. Struct. Biol. 131, 56–66 (2000).
    [CrossRef] [PubMed]
  19. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  20. C. Saloma, “Computational complexity and observation of physical signals,” J. Appl. Phys. 74, 5314–5319 (1993).
    [CrossRef]

2001 (3)

S. Takasu, “Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis),” JEOL News 36E, 60–63 (2001).

K. Isoird, M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson, J. P. Chante, “Study of 6H-SiC high voltage bipolar diodes under reverse biases,” Appl. Surf. Sci. 184, 477–482 (2001).
[CrossRef]

T. Koyama, M. Umeno, J. Komori, Y. Mashiko, “Evaluation of sliced morphology by near-infrared-laser optical-beam-induced-current technique,” Jpn. J. Appl. Phys. 40, 6446–6452 (2001).
[CrossRef]

2000 (3)

D. Pogany, K. Esmark, M. Litzenberger, C. Furbock, H. Gossner, E. Gornik, “Bulk and surface degradation mode in 0.35 micron technology gg-nMOS ESD protection devices,” Microelectron. Reliab. 40, 1467–1472 (2000).
[CrossRef]

G. Soelkner, J. Kreutle, J. Quincke, W. Kaindl, G. Wachutka, “Back side optical beam induced current method for the localization of electric field enhancements in edge termination structures of power semiconductor devices,” Microelectron. Reliab. 40, 1641–1645 (2000).
[CrossRef]

C. Palmes-Saloma, C. Saloma, “Long-depth imaging of specific gene expressions in wholemount mouse embryos with single photon excitation confocal fluorescence microscope and FISH,” J. Struct. Biol. 131, 56–66 (2000).
[CrossRef] [PubMed]

1999 (3)

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

F. J. Kao, M. K. Huang, Y. S. Wang, S. L. Huang, M. K. Lee, C. K. Sun, “Two-photon optical-beam-induced current imaging of indium gallium nitride blue light-emitting diodes,” Opt. Lett. 24, 1407–1409 (1999).
[CrossRef]

T. Koyama, K. Sonoda, J. Komori, Y. Mashiko, M. Umeno, “Detection of defects in metal interconnects by the nonbias-optical beam induced current technique,” J. Appl. Phys. 86, 5949–5956 (1999).
[CrossRef]

1998 (2)

C. Blanca, C. Saloma, “Monte-Carlo analysis of two-photon imaging through a scattering medium,” Appl. Opt. 37, 8092–8102 (1998).
[CrossRef]

C. Saloma, C. Palmes-Saloma, H. Kondoh, “Site-specific confocal fluorescence imaging of biological microstructures in turbid medium,” Phys. Med. Biol. 43, 1741–1759 (1998).
[CrossRef] [PubMed]

1997 (1)

C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997).
[CrossRef]

1996 (1)

A. Ribes, S. Damaskinos, H. Tiedje, A. Dixon, D. Brodie, “Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning MACROscope/microscope,” Sol. Energy Mater. Sol. Cells 44, 439–450 (1996).
[CrossRef]

1995 (1)

M. Unlu, B. Goldberg, W. Herzog, D. Sun, E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

1993 (1)

C. Saloma, “Computational complexity and observation of physical signals,” J. Appl. Phys. 74, 5314–5319 (1993).
[CrossRef]

Blanca, C.

Born, M.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

Brodie, D.

A. Ribes, S. Damaskinos, H. Tiedje, A. Dixon, D. Brodie, “Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning MACROscope/microscope,” Sol. Energy Mater. Sol. Cells 44, 439–450 (1996).
[CrossRef]

Chante, J. P.

K. Isoird, M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson, J. P. Chante, “Study of 6H-SiC high voltage bipolar diodes under reverse biases,” Appl. Surf. Sci. 184, 477–482 (2001).
[CrossRef]

Damaskinos, S.

A. Ribes, S. Damaskinos, H. Tiedje, A. Dixon, D. Brodie, “Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning MACROscope/microscope,” Sol. Energy Mater. Sol. Cells 44, 439–450 (1996).
[CrossRef]

Denk, W.

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997).
[CrossRef]

Dixon, A.

A. Ribes, S. Damaskinos, H. Tiedje, A. Dixon, D. Brodie, “Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning MACROscope/microscope,” Sol. Energy Mater. Sol. Cells 44, 439–450 (1996).
[CrossRef]

Esmark, K.

D. Pogany, K. Esmark, M. Litzenberger, C. Furbock, H. Gossner, E. Gornik, “Bulk and surface degradation mode in 0.35 micron technology gg-nMOS ESD protection devices,” Microelectron. Reliab. 40, 1467–1472 (2000).
[CrossRef]

Footner, P. K.

B. P. Richards, P. K. Footner, The Role of Microscopy in Semiconductor Failure Analysis (Oxford U. Press, New York, 1992).

Furbock, C.

D. Pogany, K. Esmark, M. Litzenberger, C. Furbock, H. Gossner, E. Gornik, “Bulk and surface degradation mode in 0.35 micron technology gg-nMOS ESD protection devices,” Microelectron. Reliab. 40, 1467–1472 (2000).
[CrossRef]

Goldberg, B.

M. Unlu, B. Goldberg, W. Herzog, D. Sun, E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

Gornik, E.

D. Pogany, K. Esmark, M. Litzenberger, C. Furbock, H. Gossner, E. Gornik, “Bulk and surface degradation mode in 0.35 micron technology gg-nMOS ESD protection devices,” Microelectron. Reliab. 40, 1467–1472 (2000).
[CrossRef]

Gossner, H.

D. Pogany, K. Esmark, M. Litzenberger, C. Furbock, H. Gossner, E. Gornik, “Bulk and surface degradation mode in 0.35 micron technology gg-nMOS ESD protection devices,” Microelectron. Reliab. 40, 1467–1472 (2000).
[CrossRef]

Herzog, W.

M. Unlu, B. Goldberg, W. Herzog, D. Sun, E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

Huang, M. K.

Huang, S. L.

Isoird, K.

K. Isoird, M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson, J. P. Chante, “Study of 6H-SiC high voltage bipolar diodes under reverse biases,” Appl. Surf. Sci. 184, 477–482 (2001).
[CrossRef]

Kaindl, W.

G. Soelkner, J. Kreutle, J. Quincke, W. Kaindl, G. Wachutka, “Back side optical beam induced current method for the localization of electric field enhancements in edge termination structures of power semiconductor devices,” Microelectron. Reliab. 40, 1641–1645 (2000).
[CrossRef]

Kao, F. J.

Komori, J.

T. Koyama, M. Umeno, J. Komori, Y. Mashiko, “Evaluation of sliced morphology by near-infrared-laser optical-beam-induced-current technique,” Jpn. J. Appl. Phys. 40, 6446–6452 (2001).
[CrossRef]

T. Koyama, K. Sonoda, J. Komori, Y. Mashiko, M. Umeno, “Detection of defects in metal interconnects by the nonbias-optical beam induced current technique,” J. Appl. Phys. 86, 5949–5956 (1999).
[CrossRef]

Kondoh, H.

C. Saloma, C. Palmes-Saloma, H. Kondoh, “Site-specific confocal fluorescence imaging of biological microstructures in turbid medium,” Phys. Med. Biol. 43, 1741–1759 (1998).
[CrossRef] [PubMed]

Koyama, T.

T. Koyama, M. Umeno, J. Komori, Y. Mashiko, “Evaluation of sliced morphology by near-infrared-laser optical-beam-induced-current technique,” Jpn. J. Appl. Phys. 40, 6446–6452 (2001).
[CrossRef]

T. Koyama, K. Sonoda, J. Komori, Y. Mashiko, M. Umeno, “Detection of defects in metal interconnects by the nonbias-optical beam induced current technique,” J. Appl. Phys. 86, 5949–5956 (1999).
[CrossRef]

Kreutle, J.

G. Soelkner, J. Kreutle, J. Quincke, W. Kaindl, G. Wachutka, “Back side optical beam induced current method for the localization of electric field enhancements in edge termination structures of power semiconductor devices,” Microelectron. Reliab. 40, 1641–1645 (2000).
[CrossRef]

Lazar, M.

K. Isoird, M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson, J. P. Chante, “Study of 6H-SiC high voltage bipolar diodes under reverse biases,” Appl. Surf. Sci. 184, 477–482 (2001).
[CrossRef]

Lee, M. K.

Litzenberger, M.

D. Pogany, K. Esmark, M. Litzenberger, C. Furbock, H. Gossner, E. Gornik, “Bulk and surface degradation mode in 0.35 micron technology gg-nMOS ESD protection devices,” Microelectron. Reliab. 40, 1467–1472 (2000).
[CrossRef]

Locatelli, M. L.

K. Isoird, M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson, J. P. Chante, “Study of 6H-SiC high voltage bipolar diodes under reverse biases,” Appl. Surf. Sci. 184, 477–482 (2001).
[CrossRef]

Mashiko, Y.

T. Koyama, M. Umeno, J. Komori, Y. Mashiko, “Evaluation of sliced morphology by near-infrared-laser optical-beam-induced-current technique,” Jpn. J. Appl. Phys. 40, 6446–6452 (2001).
[CrossRef]

T. Koyama, K. Sonoda, J. Komori, Y. Mashiko, M. Umeno, “Detection of defects in metal interconnects by the nonbias-optical beam induced current technique,” J. Appl. Phys. 86, 5949–5956 (1999).
[CrossRef]

Newton, R.

R. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966).

Ottaviani, L.

K. Isoird, M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson, J. P. Chante, “Study of 6H-SiC high voltage bipolar diodes under reverse biases,” Appl. Surf. Sci. 184, 477–482 (2001).
[CrossRef]

Palmes-Saloma, C.

C. Palmes-Saloma, C. Saloma, “Long-depth imaging of specific gene expressions in wholemount mouse embryos with single photon excitation confocal fluorescence microscope and FISH,” J. Struct. Biol. 131, 56–66 (2000).
[CrossRef] [PubMed]

C. Saloma, C. Palmes-Saloma, H. Kondoh, “Site-specific confocal fluorescence imaging of biological microstructures in turbid medium,” Phys. Med. Biol. 43, 1741–1759 (1998).
[CrossRef] [PubMed]

Planson, D.

K. Isoird, M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson, J. P. Chante, “Study of 6H-SiC high voltage bipolar diodes under reverse biases,” Appl. Surf. Sci. 184, 477–482 (2001).
[CrossRef]

Pogany, D.

D. Pogany, K. Esmark, M. Litzenberger, C. Furbock, H. Gossner, E. Gornik, “Bulk and surface degradation mode in 0.35 micron technology gg-nMOS ESD protection devices,” Microelectron. Reliab. 40, 1467–1472 (2000).
[CrossRef]

Quincke, J.

G. Soelkner, J. Kreutle, J. Quincke, W. Kaindl, G. Wachutka, “Back side optical beam induced current method for the localization of electric field enhancements in edge termination structures of power semiconductor devices,” Microelectron. Reliab. 40, 1641–1645 (2000).
[CrossRef]

Raynaud, C.

K. Isoird, M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson, J. P. Chante, “Study of 6H-SiC high voltage bipolar diodes under reverse biases,” Appl. Surf. Sci. 184, 477–482 (2001).
[CrossRef]

Ribes, A.

A. Ribes, S. Damaskinos, H. Tiedje, A. Dixon, D. Brodie, “Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning MACROscope/microscope,” Sol. Energy Mater. Sol. Cells 44, 439–450 (1996).
[CrossRef]

Richards, B. P.

B. P. Richards, P. K. Footner, The Role of Microscopy in Semiconductor Failure Analysis (Oxford U. Press, New York, 1992).

Saloma, C.

C. Palmes-Saloma, C. Saloma, “Long-depth imaging of specific gene expressions in wholemount mouse embryos with single photon excitation confocal fluorescence microscope and FISH,” J. Struct. Biol. 131, 56–66 (2000).
[CrossRef] [PubMed]

C. Blanca, C. Saloma, “Monte-Carlo analysis of two-photon imaging through a scattering medium,” Appl. Opt. 37, 8092–8102 (1998).
[CrossRef]

C. Saloma, C. Palmes-Saloma, H. Kondoh, “Site-specific confocal fluorescence imaging of biological microstructures in turbid medium,” Phys. Med. Biol. 43, 1741–1759 (1998).
[CrossRef] [PubMed]

C. Saloma, “Computational complexity and observation of physical signals,” J. Appl. Phys. 74, 5314–5319 (1993).
[CrossRef]

Sheppard, C. J. R.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Soelkner, G.

G. Soelkner, J. Kreutle, J. Quincke, W. Kaindl, G. Wachutka, “Back side optical beam induced current method for the localization of electric field enhancements in edge termination structures of power semiconductor devices,” Microelectron. Reliab. 40, 1641–1645 (2000).
[CrossRef]

Sonoda, K.

T. Koyama, K. Sonoda, J. Komori, Y. Mashiko, M. Umeno, “Detection of defects in metal interconnects by the nonbias-optical beam induced current technique,” J. Appl. Phys. 86, 5949–5956 (1999).
[CrossRef]

Sun, C. K.

Sun, D.

M. Unlu, B. Goldberg, W. Herzog, D. Sun, E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

Takasu, S.

S. Takasu, “Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis),” JEOL News 36E, 60–63 (2001).

Tiedje, H.

A. Ribes, S. Damaskinos, H. Tiedje, A. Dixon, D. Brodie, “Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning MACROscope/microscope,” Sol. Energy Mater. Sol. Cells 44, 439–450 (1996).
[CrossRef]

Towe, E.

M. Unlu, B. Goldberg, W. Herzog, D. Sun, E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

Umeno, M.

T. Koyama, M. Umeno, J. Komori, Y. Mashiko, “Evaluation of sliced morphology by near-infrared-laser optical-beam-induced-current technique,” Jpn. J. Appl. Phys. 40, 6446–6452 (2001).
[CrossRef]

T. Koyama, K. Sonoda, J. Komori, Y. Mashiko, M. Umeno, “Detection of defects in metal interconnects by the nonbias-optical beam induced current technique,” J. Appl. Phys. 86, 5949–5956 (1999).
[CrossRef]

Unlu, M.

M. Unlu, B. Goldberg, W. Herzog, D. Sun, E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

Wachutka, G.

G. Soelkner, J. Kreutle, J. Quincke, W. Kaindl, G. Wachutka, “Back side optical beam induced current method for the localization of electric field enhancements in edge termination structures of power semiconductor devices,” Microelectron. Reliab. 40, 1641–1645 (2000).
[CrossRef]

Wang, Y. S.

Wilson, T.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

T. Wilson, Confocal Microscopy (Academic, London, 1990).

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

Xu, C.

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Unlu, B. Goldberg, W. Herzog, D. Sun, E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997).
[CrossRef]

Appl. Surf. Sci. (1)

K. Isoird, M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson, J. P. Chante, “Study of 6H-SiC high voltage bipolar diodes under reverse biases,” Appl. Surf. Sci. 184, 477–482 (2001).
[CrossRef]

J. Appl. Phys. (3)

T. Koyama, K. Sonoda, J. Komori, Y. Mashiko, M. Umeno, “Detection of defects in metal interconnects by the nonbias-optical beam induced current technique,” J. Appl. Phys. 86, 5949–5956 (1999).
[CrossRef]

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

C. Saloma, “Computational complexity and observation of physical signals,” J. Appl. Phys. 74, 5314–5319 (1993).
[CrossRef]

J. Struct. Biol. (1)

C. Palmes-Saloma, C. Saloma, “Long-depth imaging of specific gene expressions in wholemount mouse embryos with single photon excitation confocal fluorescence microscope and FISH,” J. Struct. Biol. 131, 56–66 (2000).
[CrossRef] [PubMed]

JEOL News (1)

S. Takasu, “Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis),” JEOL News 36E, 60–63 (2001).

Jpn. J. Appl. Phys. (1)

T. Koyama, M. Umeno, J. Komori, Y. Mashiko, “Evaluation of sliced morphology by near-infrared-laser optical-beam-induced-current technique,” Jpn. J. Appl. Phys. 40, 6446–6452 (2001).
[CrossRef]

Microelectron. Reliab. (2)

D. Pogany, K. Esmark, M. Litzenberger, C. Furbock, H. Gossner, E. Gornik, “Bulk and surface degradation mode in 0.35 micron technology gg-nMOS ESD protection devices,” Microelectron. Reliab. 40, 1467–1472 (2000).
[CrossRef]

G. Soelkner, J. Kreutle, J. Quincke, W. Kaindl, G. Wachutka, “Back side optical beam induced current method for the localization of electric field enhancements in edge termination structures of power semiconductor devices,” Microelectron. Reliab. 40, 1641–1645 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (1)

C. Saloma, C. Palmes-Saloma, H. Kondoh, “Site-specific confocal fluorescence imaging of biological microstructures in turbid medium,” Phys. Med. Biol. 43, 1741–1759 (1998).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

A. Ribes, S. Damaskinos, H. Tiedje, A. Dixon, D. Brodie, “Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning MACROscope/microscope,” Sol. Energy Mater. Sol. Cells 44, 439–450 (1996).
[CrossRef]

Other (5)

B. P. Richards, P. K. Footner, The Role of Microscopy in Semiconductor Failure Analysis (Oxford U. Press, New York, 1992).

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

T. Wilson, Confocal Microscopy (Academic, London, 1990).

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

R. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical setup of beam-scanning microscope for simultaneous confocal reflectance and 1P-OBIC imaging. The optical excitation power is controlled via a neutral density filter (ND).

Fig. 2
Fig. 2

Comparison of (a) confocal and (b) 1P-OBIC images at various axial locations (Δz = 1 µm, image size is 30 µm × 30 µm, 128 by 128 pixels).

Fig. 3
Fig. 3

Exclusive images of (a) semiconductor sites and (b) metal sites at various axial locations (Δz = 1 µm, 128 by 128 pixels, image size, 30 µm × 30 µm). The images are derived with the confocal and 1P-OBIC images in Fig. 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

irx, y, z=|orx, y, zh2x, y, z|2,
isx, y=- osx, y, z|hx, y, z|2dz,

Metrics