Abstract

A nonuniform photovoltaic field is created in Fe:LiNbO3 during hologram recording exposures. Experimental results and analysis show the degradation of the volume holograms in the presence of the photovoltaic field. A sodium chloride solution is used to short-circuit the crystal to improve the stored- image quality. Experimental results to demonstrate the effectiveness of the proposed method are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  2. J. F. Heanue, M. C. Bashaw, L. Hesslink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  3. A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
    [CrossRef]
  4. C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
    [CrossRef]
  5. P. Yeh, “Introduction to photorefractive nonlinear optics,” (Wiley, New York, 1993), pp. 111–114.
  6. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index, in homogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  7. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  8. M. Petrov, S. Stepanov, A. Khomenko, Photorefractive crystals in coherent optical systems (Springer-Verlag, Berlin, 1991), pp. 223–226.
  9. D. Brady, K. Hsu, D. Psaltis, “Periodically refreshed multiply exposed photorefractive holograms,” Opt. Lett. 15, 817–819 (1990).
    [CrossRef] [PubMed]

1994

J. F. Heanue, M. C. Bashaw, L. Hesslink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993

1991

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

1990

1978

A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

1966

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index, in homogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index, in homogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index, in homogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, L. Hesslink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index, in homogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Brady, D.

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index, in homogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Glass, A. M.

A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
[CrossRef]

Gu, C.

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesslink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesslink, L.

J. F. Heanue, M. C. Bashaw, L. Hesslink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hong, J.

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Hsu, K.

Khomenko, A.

M. Petrov, S. Stepanov, A. Khomenko, Photorefractive crystals in coherent optical systems (Springer-Verlag, Berlin, 1991), pp. 223–226.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index, in homogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Li, H.

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Mok, F. H.

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index, in homogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Petrov, M.

M. Petrov, S. Stepanov, A. Khomenko, Photorefractive crystals in coherent optical systems (Springer-Verlag, Berlin, 1991), pp. 223–226.

Psaltis, D.

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

D. Brady, K. Hsu, D. Psaltis, “Periodically refreshed multiply exposed photorefractive holograms,” Opt. Lett. 15, 817–819 (1990).
[CrossRef] [PubMed]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index, in homogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Stepanov, S.

M. Petrov, S. Stepanov, A. Khomenko, Photorefractive crystals in coherent optical systems (Springer-Verlag, Berlin, 1991), pp. 223–226.

Yeh, P.

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

P. Yeh, “Introduction to photorefractive nonlinear optics,” (Wiley, New York, 1993), pp. 111–114.

Appl. Phys. Lett.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index, in homogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Appl. Phys.

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Opt. Eng.

A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
[CrossRef]

Opt. Lett.

Science

J. F. Heanue, M. C. Bashaw, L. Hesslink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Other

P. Yeh, “Introduction to photorefractive nonlinear optics,” (Wiley, New York, 1993), pp. 111–114.

M. Petrov, S. Stepanov, A. Khomenko, Photorefractive crystals in coherent optical systems (Springer-Verlag, Berlin, 1991), pp. 223–226.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of the experimental arrangements. SLM is the spatial light modulator.

Fig. 2
Fig. 2

(a) Reconstruction of the first stored hologram just after its storage, (b) reconstruction of the first hologram after another 300 holograms were recorded, (c) reconstruction of the same hologram with the readout beams for picture making at an angle of 2 × 10-5 rad.

Fig. 3
Fig. 3

(a) Reconstruction of the first stored hologram just after its storage, (b) reconstruction of the same hologram after another 300 holograms were recorded. The crystal was in a NaCl solution.

Fig. 4
Fig. 4

Reconstruction of the latest holograms. (a) After 300 holograms are stored in air where the crystal is, (b) After 300 holograms are stored in NaCl solution where the crystal is.

Fig. 5
Fig. 5

Reconstruction of the 1st, 100th, and 1000th holograms after 1000 holograms are stored by an exposure time in NaCl solution where the crystal is.

Fig. 6
Fig. 6

When one of the holograms is illuminated, the photocurrent is generated, and more charges centralize on the crystal surface to enhance the photovoltaic dc field.

Fig. 7
Fig. 7

Wave vector diagram illustrating the Bragg condition of volume holograms in the photovoltaic media.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ex, t=E0t+ESCx, t.
E0t=E0 ph1-exp-t/τdi,
ntk=n0tk+j=1k n1tk-tk-1,
n0kn0tk=12 no3γeffE0tk+no,
δθk=n0k+m-n0k/no tan α0,
δθmax=12 no2γeffE0 ph.
δθB=λ0nod sin 2α0.

Metrics