Abstract

We demonstrate a multimode-fiber bundle reference scheme in a photorefractive volume hologram and discuss its angular/spatial selectivity both experimentally and theoretically. We measure the angular/spatial selectivity, changing distances between the photorefractive crystal and the output facet of the multimode-fiber bundle. The distance variation leads to a beam-size change in the reference beam, however, the object-beam size was fixed in all cases. The dependence of the angular/spatial selectivity for random-pattern (RP) referencing on a hologram dimension was examined and the characteristics compared with those derived from Gaussian referencing. Experimental results show that the RP referencing makes little contribution to the enhancement in angular selectivity, even though it leads to a considerable enhancement in spatial selectivity. The angular selectivity is mainly dependent on the dimension of a volume hologram, even with RP referencing. It is also noteworthy that the use of an RP beam can cause some high-frequency noise in the angular-multiplexing regime, which should be avoided in a hologram memory system. Nonetheless, the spatial selectivity of the RP referencing shows nearly no dependence on hologram dimension, and is mainly dependent on the transversal speckle size of the random-pattern beam. These characteristics can also be verified by the numerical results presented here, which are in good agreement with the experimental results.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  2. K. Curtis, W. L. Wilson, “Phase correlation multiplex holography,” U.S. Patent, 5,719,691 (1998).
  3. C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” Opt. Soc. Am. A 9, 1978–1983 (1992).
    [CrossRef]
  4. K. Curtis, C. Gu, D. Psaltis, “Cross talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
    [CrossRef] [PubMed]
  5. M. C. Bashaw, J. F. Heanue, A. Aharoni, J. F. Walkup, L. Hesselink, “Cross-talk consideration for angular and phase-encoded multiplexing in volume holography,” J. Opt. Soc. Am. B 11, 1820–1836 (1994).
    [CrossRef]
  6. X. Yi, P. Yeh, C. Gu, S. Campbell, “Crosstalk in volume holographic memory,” Proc. IEEE 87, 1912–1930 (1999).
    [CrossRef]
  7. H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 26, 2191–2193 (1993).
    [CrossRef]
  8. Y. H. Kang, K. H. Kim, B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22, 739–741 (1997).
    [CrossRef] [PubMed]
  9. K. H. Kim, H.-S. Lee, B. Lee, “Enhancement of the wavelength selectivity of a volume hologram by use of multimode optical fiber referencing,” Opt. Lett. 23, 1224–1225 (1998).
    [CrossRef]
  10. Y. H. Kang, K. H. Kim, B. Lee, “Angular and speckle multiplexing of photorefractive holograms by use of fiber speckle patterns,” Appl. Opt. 37, 6969–6972 (1998).
    [CrossRef]
  11. H.-S. Lee, K. H. Kim, B. Lee, “Cross-talk noise analysis in holographic memory with hybrid multiplexing of random phase code and wavelength,” in Advanced Optical Data Storage: Materials, Systems, and Interface to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Kufal, G. T. Sincerbox, eds., Proc. SPIE, 3802, 63–71 (1999).
    [CrossRef]
  12. C.-C. Sun, W.-C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
    [CrossRef]
  13. B. Ya. Zel’dovich, A. V. Mamaev, V. V. Shkunov, Speckle-Wave Interactions in Application to Holography and Nonlinear Optics (CRCLondon, 1995).
  14. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1984), Chap. 1, pp. 9–76.
  15. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 3, pp. 55–61.
  16. Y. Jeong, B. Lee, “Nonlinear property analysis of long-period fiber gratings using discretized coupled-mode theory,” IEEE J. Quantum Electron. 35, 1284–1292 (1999).
    [CrossRef]
  17. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
    [CrossRef]
  18. O. Matoba, B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6785–6790 (1999).
    [CrossRef]

2000

C.-C. Sun, W.-C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

1999

Y. Jeong, B. Lee, “Nonlinear property analysis of long-period fiber gratings using discretized coupled-mode theory,” IEEE J. Quantum Electron. 35, 1284–1292 (1999).
[CrossRef]

X. Yi, P. Yeh, C. Gu, S. Campbell, “Crosstalk in volume holographic memory,” Proc. IEEE 87, 1912–1930 (1999).
[CrossRef]

O. Matoba, B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6785–6790 (1999).
[CrossRef]

1998

1997

1994

1993

K. Curtis, C. Gu, D. Psaltis, “Cross talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
[CrossRef] [PubMed]

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 26, 2191–2193 (1993).
[CrossRef]

1992

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” Opt. Soc. Am. A 9, 1978–1983 (1992).
[CrossRef]

1976

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

1963

Aharoni, A.

Bashaw, M. C.

Campbell, S.

X. Yi, P. Yeh, C. Gu, S. Campbell, “Crosstalk in volume holographic memory,” Proc. IEEE 87, 1912–1930 (1999).
[CrossRef]

Curtis, K.

K. Curtis, C. Gu, D. Psaltis, “Cross talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
[CrossRef] [PubMed]

K. Curtis, W. L. Wilson, “Phase correlation multiplex holography,” U.S. Patent, 5,719,691 (1998).

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1984), Chap. 1, pp. 9–76.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 3, pp. 55–61.

Gu, C.

X. Yi, P. Yeh, C. Gu, S. Campbell, “Crosstalk in volume holographic memory,” Proc. IEEE 87, 1912–1930 (1999).
[CrossRef]

K. Curtis, C. Gu, D. Psaltis, “Cross talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
[CrossRef] [PubMed]

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” Opt. Soc. Am. A 9, 1978–1983 (1992).
[CrossRef]

Heanue, J. F.

Hesselink, L.

Hong, J.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” Opt. Soc. Am. A 9, 1978–1983 (1992).
[CrossRef]

Javidi, B.

Jeong, Y.

Y. Jeong, B. Lee, “Nonlinear property analysis of long-period fiber gratings using discretized coupled-mode theory,” IEEE J. Quantum Electron. 35, 1284–1292 (1999).
[CrossRef]

Jin, S. K.

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 26, 2191–2193 (1993).
[CrossRef]

Kang, Y. H.

Kim, K. H.

Kogelnik, H.

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

Lee, B.

Y. Jeong, B. Lee, “Nonlinear property analysis of long-period fiber gratings using discretized coupled-mode theory,” IEEE J. Quantum Electron. 35, 1284–1292 (1999).
[CrossRef]

K. H. Kim, H.-S. Lee, B. Lee, “Enhancement of the wavelength selectivity of a volume hologram by use of multimode optical fiber referencing,” Opt. Lett. 23, 1224–1225 (1998).
[CrossRef]

Y. H. Kang, K. H. Kim, B. Lee, “Angular and speckle multiplexing of photorefractive holograms by use of fiber speckle patterns,” Appl. Opt. 37, 6969–6972 (1998).
[CrossRef]

Y. H. Kang, K. H. Kim, B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22, 739–741 (1997).
[CrossRef] [PubMed]

H.-S. Lee, K. H. Kim, B. Lee, “Cross-talk noise analysis in holographic memory with hybrid multiplexing of random phase code and wavelength,” in Advanced Optical Data Storage: Materials, Systems, and Interface to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Kufal, G. T. Sincerbox, eds., Proc. SPIE, 3802, 63–71 (1999).
[CrossRef]

Lee, H.

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 26, 2191–2193 (1993).
[CrossRef]

Lee, H.-S.

K. H. Kim, H.-S. Lee, B. Lee, “Enhancement of the wavelength selectivity of a volume hologram by use of multimode optical fiber referencing,” Opt. Lett. 23, 1224–1225 (1998).
[CrossRef]

H.-S. Lee, K. H. Kim, B. Lee, “Cross-talk noise analysis in holographic memory with hybrid multiplexing of random phase code and wavelength,” in Advanced Optical Data Storage: Materials, Systems, and Interface to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Kufal, G. T. Sincerbox, eds., Proc. SPIE, 3802, 63–71 (1999).
[CrossRef]

Mamaev, A. V.

B. Ya. Zel’dovich, A. V. Mamaev, V. V. Shkunov, Speckle-Wave Interactions in Application to Holography and Nonlinear Optics (CRCLondon, 1995).

Matoba, O.

McMichael, I.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” Opt. Soc. Am. A 9, 1978–1983 (1992).
[CrossRef]

Mok, F.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” Opt. Soc. Am. A 9, 1978–1983 (1992).
[CrossRef]

Ou Yang, Y.

C.-C. Sun, W.-C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Psaltis, D.

Saxena, R.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” Opt. Soc. Am. A 9, 1978–1983 (1992).
[CrossRef]

Shkunov, V. V.

B. Ya. Zel’dovich, A. V. Mamaev, V. V. Shkunov, Speckle-Wave Interactions in Application to Holography and Nonlinear Optics (CRCLondon, 1995).

Su, W.-C.

C.-C. Sun, W.-C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Sun, C.-C.

C.-C. Sun, W.-C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

van Heerden, P. J.

Walkup, J. F.

Wang, B.

C.-C. Sun, W.-C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Wilson, W. L.

K. Curtis, W. L. Wilson, “Phase correlation multiplex holography,” U.S. Patent, 5,719,691 (1998).

Yeh, P.

X. Yi, P. Yeh, C. Gu, S. Campbell, “Crosstalk in volume holographic memory,” Proc. IEEE 87, 1912–1930 (1999).
[CrossRef]

Yi, X.

X. Yi, P. Yeh, C. Gu, S. Campbell, “Crosstalk in volume holographic memory,” Proc. IEEE 87, 1912–1930 (1999).
[CrossRef]

Zel’dovich, B. Ya.

B. Ya. Zel’dovich, A. V. Mamaev, V. V. Shkunov, Speckle-Wave Interactions in Application to Holography and Nonlinear Optics (CRCLondon, 1995).

Appl. Opt.

Appl. Phys. Lett.

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 26, 2191–2193 (1993).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

IEEE J. Quantum Electron.

Y. Jeong, B. Lee, “Nonlinear property analysis of long-period fiber gratings using discretized coupled-mode theory,” IEEE J. Quantum Electron. 35, 1284–1292 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

C.-C. Sun, W.-C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Opt. Lett.

Opt. Soc. Am. A

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” Opt. Soc. Am. A 9, 1978–1983 (1992).
[CrossRef]

Proc. IEEE

X. Yi, P. Yeh, C. Gu, S. Campbell, “Crosstalk in volume holographic memory,” Proc. IEEE 87, 1912–1930 (1999).
[CrossRef]

Other

H.-S. Lee, K. H. Kim, B. Lee, “Cross-talk noise analysis in holographic memory with hybrid multiplexing of random phase code and wavelength,” in Advanced Optical Data Storage: Materials, Systems, and Interface to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Kufal, G. T. Sincerbox, eds., Proc. SPIE, 3802, 63–71 (1999).
[CrossRef]

B. Ya. Zel’dovich, A. V. Mamaev, V. V. Shkunov, Speckle-Wave Interactions in Application to Holography and Nonlinear Optics (CRCLondon, 1995).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1984), Chap. 1, pp. 9–76.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 3, pp. 55–61.

K. Curtis, W. L. Wilson, “Phase correlation multiplex holography,” U.S. Patent, 5,719,691 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Angular detuning of a volume hologram, (b) effective angular-width change through propagation.

Fig. 2
Fig. 2

Experimental setup for the volume holographic recording and reading system. L R is the distance between the center of the photorefractive crystal and the output end of the multimode-fiber bundle. Note that the crystal is rotated or moved for the detuning measurements.

Fig. 3
Fig. 3

Speckle pattern of the He-Ne laser light through the multimode-fiber bundle.

Fig. 4
Fig. 4

Measured (solid curve) and calculated (dashed curve) selectivity of the volume holograms: (a) for the angular deviation, (b) for the lateral shift. The speckle pattern of the reference beam was generated by means of the multimode-fiber bundle. In the theoretical results, the speckle pattern is given by the product of the Gaussian-intensity pattern and the random phase/amplitude pattern, the transversal speckle size of which is 40 µm. In the case of either the Gaussian reference beam or the speckle beam, the object beam is fixed as a Gaussian beam.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

EdΔεEr,
corrΔθr= Er* x, y, 0Erx, y, 0dxdy,
corrΔθrErx, y, 02Px, y×exp-ikΔθrxdxdy.
Δxrot=Lvol2 Δθr,
corrΔxr, z= Er* x, y, zErx, y, zdxdy,
corrΔxr, z= Fr* kx, kyFrkx, ky×exp-ikx-kxx+ ky-kyy+ kz-kzz-kxΔxr×dkxdkydkxdkydxdy=Frkx, ky2 expiΔxrkxdkxdky,
· E×Heig*+Eeig*×H=-iω×Eeig* · ΔεE,
êkexp-ik · r,
kz=±k2- kx2+ky2.
E= Fz, kêkexp-ik · rdkxdky,
dFz, kdz=-i  Gz, k, ka z, kdkxdky,
Gz, k, k= ω2μ8π2kzê*k · Δε rêk×exp-ik-k · rdxdy,
Δεr=mδm2Eref,m* · Eobj,m+Eref,m · Eobj,m*,
Fz, k=-i n=1N Gnz, k, kF z, kdkxdky+ GNz, k, kG z, k, kF z, k×dkxdkydkxdkydz+α k,
G1z, k, k= G z, k, kdz,
Gnz, k, k= Gn-1z, k, kG z, k, kdkxdkydz n2,

Metrics