Abstract

Thermal behavior in land–groove phase-change optical recording has been examined for different polarizations of the incident beam. Three-dimensional temperature distribution in the grooved medium is evaluated by the numerical solution of Maxwell’s equations and the heat transfer equation with the finite-difference method. Both experiments and calculations have shown that the thermal behavior in the medium is dependent on the state of polarization and the nature of the track. The calculated mark shapes in a quadrilayer stack are in good agreement with experimental observations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
    [CrossRef]
  2. T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).
  3. M. Libera, M. Chen, “Multilayered thin-film materials for phase-change erasable storage,” MRS Bull., Apr., 40–45 (1990).
  4. T. Ohta, N. Akahira, S. Ohara, I. Satoh, “High density phase-change optical recording,” Optoelectron. Devices Technol. 10, 361–380 (1995).
  5. C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigation of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
    [CrossRef]
  6. J. J. M. Braat, G. Bouwhuis, “Position sensing in video disk readout,” Appl. Opt. 17, 2013–2021 (1978).
    [CrossRef] [PubMed]
  7. T. W. McDaniel, “Thermal design of high performance magneto-optical data storage films,” J. Magn. Soc. Jpn. 23(Suppl. S1), 251–256 (1999).
  8. I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
    [CrossRef]
  9. H. H. Hopkins, “Diffraction theory of laser read-out systems for optical video discs,” J. Opt. Soc. Am. 69, 4–24 (1979).
    [CrossRef]
  10. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995), Chaps. 3–7.
  11. J. B. Judkins, C. W. Haggans, R. W. Ziolkowski, “Two-dimensional finite-difference time-domain simulation for rewritable optical disk surface structure design,” Appl. Opt. 35, 2477–2487 (1996).
    [CrossRef] [PubMed]
  12. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, U.K., 1959).
  13. D. R. Croft, D. G. Lilley, Heat Transfer Calculations Using Finite Difference Equations (Applied Science, London, 1977).
  14. C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
    [CrossRef]
  15. J. Burke, The Kinetics of Phase Transformations in Metals (Pergamon, New York, 1965).
  16. M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296–9303 (1997).
    [CrossRef]
  17. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid phase transition of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
    [CrossRef]

2000 (1)

C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
[CrossRef]

1999 (1)

T. W. McDaniel, “Thermal design of high performance magneto-optical data storage films,” J. Magn. Soc. Jpn. 23(Suppl. S1), 251–256 (1999).

1998 (1)

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

1997 (2)

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigation of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296–9303 (1997).
[CrossRef]

1996 (1)

1995 (1)

T. Ohta, N. Akahira, S. Ohara, I. Satoh, “High density phase-change optical recording,” Optoelectron. Devices Technol. 10, 361–380 (1995).

1991 (1)

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid phase transition of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[CrossRef]

1990 (1)

M. Libera, M. Chen, “Multilayered thin-film materials for phase-change erasable storage,” MRS Bull., Apr., 40–45 (1990).

1989 (1)

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

1979 (1)

1978 (1)

1971 (1)

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Akahira, N.

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

T. Ohta, N. Akahira, S. Ohara, I. Satoh, “High density phase-change optical recording,” Optoelectron. Devices Technol. 10, 361–380 (1995).

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid phase transition of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[CrossRef]

Akiyama, T.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Bartlett, C.

Bates, K.

Bletscher, W.

Bouwhuis, G.

Braat, J. J. M.

Burke, J.

J. Burke, The Kinetics of Phase Transformations in Metals (Pergamon, New York, 1965).

Carslaw, H. S.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, U.K., 1959).

Chen, M.

M. Libera, M. Chen, “Multilayered thin-film materials for phase-change erasable storage,” MRS Bull., Apr., 40–45 (1990).

Cheng, L.

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigation of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296–9303 (1997).
[CrossRef]

Chung, C. S.

Croft, D. R.

D. R. Croft, D. G. Lilley, Heat Transfer Calculations Using Finite Difference Equations (Applied Science, London, 1977).

de Nuerville, J.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Erwin, J. K.

Feinleib, J.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Furukawa, S.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Gerber, R. E.

Goodman, T. D.

Haggans, C. W.

Hopkins, H. H.

Inoue, K.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Jaeger, J. C.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, U.K., 1959).

Judkins, J. B.

Kim, S. G.

Kim, T.

Lee, S. K.

Libera, M.

M. Libera, M. Chen, “Multilayered thin-film materials for phase-change erasable storage,” MRS Bull., Apr., 40–45 (1990).

Lilley, D. G.

D. R. Croft, D. G. Lilley, Heat Transfer Calculations Using Finite Difference Equations (Applied Science, London, 1977).

Mansuripur, M.

C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
[CrossRef]

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigation of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296–9303 (1997).
[CrossRef]

McDaniel, T. W.

T. W. McDaniel, “Thermal design of high performance magneto-optical data storage films,” J. Magn. Soc. Jpn. 23(Suppl. S1), 251–256 (1999).

Moss, S. C.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Nagata, K.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Nakamura, S.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Nishiuchi, K.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid phase transition of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[CrossRef]

Ohara, S.

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

T. Ohta, N. Akahira, S. Ohara, I. Satoh, “High density phase-change optical recording,” Optoelectron. Devices Technol. 10, 361–380 (1995).

Ohno, E.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid phase transition of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[CrossRef]

Ohta, T.

T. Ohta, N. Akahira, S. Ohara, I. Satoh, “High density phase-change optical recording,” Optoelectron. Devices Technol. 10, 361–380 (1995).

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Ovshinsky, S. R.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Peng, C.

C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
[CrossRef]

M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296–9303 (1997).
[CrossRef]

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigation of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

Satoh, I.

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

T. Ohta, N. Akahira, S. Ohara, I. Satoh, “High density phase-change optical recording,” Optoelectron. Devices Technol. 10, 361–380 (1995).

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995), Chaps. 3–7.

Takao, M.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid phase transition of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[CrossRef]

Takenaga, M.

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

Uchida, M.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Yamada, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid phase transition of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[CrossRef]

Yoshioka, K.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Ziolkowski, R. W.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

IEEE Trans. Magn. (1)

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

J. Appl. Phys. (3)

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigation of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid phase transition of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[CrossRef]

J. Magn. Soc. Jpn. (1)

T. W. McDaniel, “Thermal design of high performance magneto-optical data storage films,” J. Magn. Soc. Jpn. 23(Suppl. S1), 251–256 (1999).

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. Suppl. (1)

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

MRS Bull. (1)

M. Libera, M. Chen, “Multilayered thin-film materials for phase-change erasable storage,” MRS Bull., Apr., 40–45 (1990).

Optoelectron. Devices Technol. (1)

T. Ohta, N. Akahira, S. Ohara, I. Satoh, “High density phase-change optical recording,” Optoelectron. Devices Technol. 10, 361–380 (1995).

Other (4)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995), Chaps. 3–7.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, U.K., 1959).

D. R. Croft, D. G. Lilley, Heat Transfer Calculations Using Finite Difference Equations (Applied Science, London, 1977).

J. Burke, The Kinetics of Phase Transformations in Metals (Pergamon, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the simulated optical system. A linearly polarized Gaussian beam of light is brought to focus onto a grooved optical disk by an objective lens. The optical disk consists of four layers (i = 1, 2, 3, 4). The first layer (i = 1) and the third layer (i = 3) are usually dielectric, the second layer (i = 2) is phase change, and the fourth layer (i = 4) is reflective. The groove has a trapezoidal shape with a period of p, a physical depth of d, and an inclination angle of θ.

Fig. 2
Fig. 2

Schematic of our dynamic tester. LPBS, leaky polarizing beam splitter; HWP, half-wave plate.

Fig. 3
Fig. 3

Laser pulse waveform for writing a 8Tw mark. The laser output power has three levels: the peak power (P p ), the bias power 1 (P b1), and 2 (P b2). Tw denotes the channel clock.

Fig. 4
Fig. 4

Calculated cross-track temperature distribution for both E and E polarizations in the middle of the PC layer at time = 50 ns in S1. The assumed laser power is 8 mW; it turns on at time = 0 and lasts 50 ns. The focused beam is centered either on a land track or on a groove track.

Fig. 5
Fig. 5

Computed isotherms in the curved plane conformal to the groove structure in the middle of the PC layer for both E and E polarizations when the focused spot is centered either on a land track or on a groove track in S1.

Fig. 6
Fig. 6

Carrier level as a function of peak power for writing on a land track or on a groove track for both E and E polarizations in S1. The write-pulse waveform is the repetition of a 4Tw- write pulse followed by a 4Tw space. The recorded signal has the frequency of 3.93 MHz.

Fig. 7
Fig. 7

Variations of relative signal versus erasure powers, obtained experimentally by erasing the marks on a land track or on a groove track in S1 with various laser powers in the case of E or E polarization.

Fig. 8
Fig. 8

Signal drop in reading the central track after its two nearest-neighboring tracks are overwritten ∼10 times at various powers in the configuration of E or E polarization in S1. Groove (land) track in the figure means that the central track for the measurement of cross-track cross erasure is a groove (land) track. Prior to writing on the neighboring tracks, the readout signal from land track 1 is 1 dB higher than that from a groove track whereas that from land track 2 is 3.5 dB higher.

Fig. 9
Fig. 9

Computed 4Tw mark (a) on a land track and (b) on a groove track in S2. In the simulations the laser beam moves at the linear velocity of 8.6 m/s along the Z axis. Black regions in the gray-level diagram represent the crystalline phase while the bright regions stand for the amorphous phase.

Fig. 10
Fig. 10

Same as Fig. 9 but for the 11Tw mark.

Fig. 11
Fig. 11

TEM image of the recorded amorphous marks in S2. Those tracks that are wider are land tracks.

Tables (3)

Tables Icon

Table 1 Layer Structures for Samples S1 and S2

Tables Icon

Table 2 Period p, Depth d, Sidewall Inclination Angle θ of Groove Structure, and Ratio of a Land Track Width to a Groove Track Width γ in Samples S1 and S2

Tables Icon

Table 3 Numerical Values for Complex Refractive Index ñ, Specific Heat C, and Thermal Conductivity K of Samples S1 and S2

Metrics