Abstract

We report results of measurements of the optical constants of the dielectric layer (ZnS-SiO2), reflecting layer (aluminum–chromium alloy), and phase-change layer (GeSbTe, AgInSbTe) used as the media of phase-change optical recording. The refractive index n and the absorption coefficient k of these materials vary to some extent with the film thickness and with the film deposition environment. We report the observed variations of optical constants among samples of differing structure and among samples fabricated in different laboratories.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Borg, P. W. M. Blom, B. A. J. Jacobs, B. Tieke, A. E. Wilson, I. P. D. Ubbens, G. F. Zhou, “AgInSbTe materials for high-speed phase change recording,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 191–193 (1999).
  2. G. F. Zhou, B. A. J. Jacobs, “High performance media for phase change optical recording,” Jpn. J. Appl. Phys. 38, 1625–1628 (1999).
    [CrossRef]
  3. H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
    [CrossRef]
  4. X. S. Miao, T. C. Chong, Y. M. Huang, K. G. Lim, P. K. Tan, L. P. Shi, “Dependence of optical constants on film thickness of phase-change media,” Jpn. J. Appl. Phys. 38, 1638–1641 (1999).
    [CrossRef]
  5. N. Kato, Y. Takeda, T. Fukano, T. Motohiro, S. Kawai, H. Kuno, “Compositional dependence of optical constants and microstructures of GeSbTe thin films for Compact-Disc-Rewritable (CD-RW) readable with conventional CD-ROM drives,” Jpn. J. Appl. Phys. 38, 1707–1708 (1999).
    [CrossRef]
  6. G. E. Jellison, F. A. Modine, “Optical nature of interface layers: a comparative study of the Si-SiO2 interface,” J. Opt. Soc. Am. 72, 1253–1257 (1982).
    [CrossRef]
  7. C. M. Margues, J. M. Frigerio, J. Rivory, “Effective ellipsometric thickness of an interfacial layer,” J. Opt. Soc. Am. B 8, 2523–2528 (1991).
    [CrossRef]
  8. I. Awai, J. Ikenoue, “Effect of film transition layers on the Abeles method,” Appl. Opt. 23, 1890–1896 (1984).
    [CrossRef] [PubMed]
  9. M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, “4.7 GB phase change optical disc with in-groove recording,” Jpn. J. Appl. Phys. 38, 1806–1810 (1999).
    [CrossRef]
  10. K. Kurokawa, M. Naito, K. Yasuda, T. Kashiwagi, O. Kawakubo, “A 16.8GB double-decker phase change disc,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 197–199 (1999).
  11. C. Peng, R. Liang, M. Mansuripur, “Determination of optical constants of thin films and multilayer stacks by use of concurrent reflectance, transmittance, and ellipsometric measurements,” Appl. Opt. 40, 5088–5099 (2001).
    [CrossRef]

2001

1999

G. F. Zhou, B. A. J. Jacobs, “High performance media for phase change optical recording,” Jpn. J. Appl. Phys. 38, 1625–1628 (1999).
[CrossRef]

X. S. Miao, T. C. Chong, Y. M. Huang, K. G. Lim, P. K. Tan, L. P. Shi, “Dependence of optical constants on film thickness of phase-change media,” Jpn. J. Appl. Phys. 38, 1638–1641 (1999).
[CrossRef]

N. Kato, Y. Takeda, T. Fukano, T. Motohiro, S. Kawai, H. Kuno, “Compositional dependence of optical constants and microstructures of GeSbTe thin films for Compact-Disc-Rewritable (CD-RW) readable with conventional CD-ROM drives,” Jpn. J. Appl. Phys. 38, 1707–1708 (1999).
[CrossRef]

M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, “4.7 GB phase change optical disc with in-groove recording,” Jpn. J. Appl. Phys. 38, 1806–1810 (1999).
[CrossRef]

1993

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
[CrossRef]

1991

1984

1982

Awai, I.

Blom, P. W. M.

H. J. Borg, P. W. M. Blom, B. A. J. Jacobs, B. Tieke, A. E. Wilson, I. P. D. Ubbens, G. F. Zhou, “AgInSbTe materials for high-speed phase change recording,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 191–193 (1999).

Borg, H. J.

H. J. Borg, P. W. M. Blom, B. A. J. Jacobs, B. Tieke, A. E. Wilson, I. P. D. Ubbens, G. F. Zhou, “AgInSbTe materials for high-speed phase change recording,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 191–193 (1999).

Chong, T. C.

X. S. Miao, T. C. Chong, Y. M. Huang, K. G. Lim, P. K. Tan, L. P. Shi, “Dependence of optical constants on film thickness of phase-change media,” Jpn. J. Appl. Phys. 38, 1638–1641 (1999).
[CrossRef]

Deguchi, H.

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
[CrossRef]

Frigerio, J. M.

Fukano, T.

N. Kato, Y. Takeda, T. Fukano, T. Motohiro, S. Kawai, H. Kuno, “Compositional dependence of optical constants and microstructures of GeSbTe thin films for Compact-Disc-Rewritable (CD-RW) readable with conventional CD-ROM drives,” Jpn. J. Appl. Phys. 38, 1707–1708 (1999).
[CrossRef]

Harigaya, M.

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
[CrossRef]

Huang, Y. M.

X. S. Miao, T. C. Chong, Y. M. Huang, K. G. Lim, P. K. Tan, L. P. Shi, “Dependence of optical constants on film thickness of phase-change media,” Jpn. J. Appl. Phys. 38, 1638–1641 (1999).
[CrossRef]

Ide, Y.

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
[CrossRef]

Ikenoue, J.

Inoue, A.

M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, “4.7 GB phase change optical disc with in-groove recording,” Jpn. J. Appl. Phys. 38, 1806–1810 (1999).
[CrossRef]

Iwasaki, H.

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
[CrossRef]

Jacobs, B. A. J.

G. F. Zhou, B. A. J. Jacobs, “High performance media for phase change optical recording,” Jpn. J. Appl. Phys. 38, 1625–1628 (1999).
[CrossRef]

H. J. Borg, P. W. M. Blom, B. A. J. Jacobs, B. Tieke, A. E. Wilson, I. P. D. Ubbens, G. F. Zhou, “AgInSbTe materials for high-speed phase change recording,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 191–193 (1999).

Jellison, G. E.

Jinno, S.

M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, “4.7 GB phase change optical disc with in-groove recording,” Jpn. J. Appl. Phys. 38, 1806–1810 (1999).
[CrossRef]

Kageyama, Y.

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
[CrossRef]

Kashiwagi, T.

K. Kurokawa, M. Naito, K. Yasuda, T. Kashiwagi, O. Kawakubo, “A 16.8GB double-decker phase change disc,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 197–199 (1999).

Kato, N.

N. Kato, Y. Takeda, T. Fukano, T. Motohiro, S. Kawai, H. Kuno, “Compositional dependence of optical constants and microstructures of GeSbTe thin films for Compact-Disc-Rewritable (CD-RW) readable with conventional CD-ROM drives,” Jpn. J. Appl. Phys. 38, 1707–1708 (1999).
[CrossRef]

Kawai, S.

N. Kato, Y. Takeda, T. Fukano, T. Motohiro, S. Kawai, H. Kuno, “Compositional dependence of optical constants and microstructures of GeSbTe thin films for Compact-Disc-Rewritable (CD-RW) readable with conventional CD-ROM drives,” Jpn. J. Appl. Phys. 38, 1707–1708 (1999).
[CrossRef]

Kawakubo, O.

K. Kurokawa, M. Naito, K. Yasuda, T. Kashiwagi, O. Kawakubo, “A 16.8GB double-decker phase change disc,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 197–199 (1999).

Kudo, H.

M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, “4.7 GB phase change optical disc with in-groove recording,” Jpn. J. Appl. Phys. 38, 1806–1810 (1999).
[CrossRef]

Kuno, H.

N. Kato, Y. Takeda, T. Fukano, T. Motohiro, S. Kawai, H. Kuno, “Compositional dependence of optical constants and microstructures of GeSbTe thin films for Compact-Disc-Rewritable (CD-RW) readable with conventional CD-ROM drives,” Jpn. J. Appl. Phys. 38, 1707–1708 (1999).
[CrossRef]

Kurokawa, K.

K. Kurokawa, M. Naito, K. Yasuda, T. Kashiwagi, O. Kawakubo, “A 16.8GB double-decker phase change disc,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 197–199 (1999).

Liang, R.

Lim, K. G.

X. S. Miao, T. C. Chong, Y. M. Huang, K. G. Lim, P. K. Tan, L. P. Shi, “Dependence of optical constants on film thickness of phase-change media,” Jpn. J. Appl. Phys. 38, 1638–1641 (1999).
[CrossRef]

Mansuripur, M.

Margues, C. M.

Miao, X. S.

X. S. Miao, T. C. Chong, Y. M. Huang, K. G. Lim, P. K. Tan, L. P. Shi, “Dependence of optical constants on film thickness of phase-change media,” Jpn. J. Appl. Phys. 38, 1638–1641 (1999).
[CrossRef]

Modine, F. A.

Motohiro, T.

N. Kato, Y. Takeda, T. Fukano, T. Motohiro, S. Kawai, H. Kuno, “Compositional dependence of optical constants and microstructures of GeSbTe thin films for Compact-Disc-Rewritable (CD-RW) readable with conventional CD-ROM drives,” Jpn. J. Appl. Phys. 38, 1707–1708 (1999).
[CrossRef]

Muramatsu, E.

M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, “4.7 GB phase change optical disc with in-groove recording,” Jpn. J. Appl. Phys. 38, 1806–1810 (1999).
[CrossRef]

Naito, M.

K. Kurokawa, M. Naito, K. Yasuda, T. Kashiwagi, O. Kawakubo, “A 16.8GB double-decker phase change disc,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 197–199 (1999).

Nonoyama, O.

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
[CrossRef]

Peng, C.

Rivory, J.

Shi, L. P.

X. S. Miao, T. C. Chong, Y. M. Huang, K. G. Lim, P. K. Tan, L. P. Shi, “Dependence of optical constants on film thickness of phase-change media,” Jpn. J. Appl. Phys. 38, 1638–1641 (1999).
[CrossRef]

Takahashi, M.

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
[CrossRef]

Takeda, Y.

N. Kato, Y. Takeda, T. Fukano, T. Motohiro, S. Kawai, H. Kuno, “Compositional dependence of optical constants and microstructures of GeSbTe thin films for Compact-Disc-Rewritable (CD-RW) readable with conventional CD-ROM drives,” Jpn. J. Appl. Phys. 38, 1707–1708 (1999).
[CrossRef]

Tan, P. K.

X. S. Miao, T. C. Chong, Y. M. Huang, K. G. Lim, P. K. Tan, L. P. Shi, “Dependence of optical constants on film thickness of phase-change media,” Jpn. J. Appl. Phys. 38, 1638–1641 (1999).
[CrossRef]

Taniguchi, S.

M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, “4.7 GB phase change optical disc with in-groove recording,” Jpn. J. Appl. Phys. 38, 1806–1810 (1999).
[CrossRef]

Tieke, B.

H. J. Borg, P. W. M. Blom, B. A. J. Jacobs, B. Tieke, A. E. Wilson, I. P. D. Ubbens, G. F. Zhou, “AgInSbTe materials for high-speed phase change recording,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 191–193 (1999).

Togashi, T.

M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, “4.7 GB phase change optical disc with in-groove recording,” Jpn. J. Appl. Phys. 38, 1806–1810 (1999).
[CrossRef]

Ubbens, I. P. D.

H. J. Borg, P. W. M. Blom, B. A. J. Jacobs, B. Tieke, A. E. Wilson, I. P. D. Ubbens, G. F. Zhou, “AgInSbTe materials for high-speed phase change recording,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 191–193 (1999).

Wilson, A. E.

H. J. Borg, P. W. M. Blom, B. A. J. Jacobs, B. Tieke, A. E. Wilson, I. P. D. Ubbens, G. F. Zhou, “AgInSbTe materials for high-speed phase change recording,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 191–193 (1999).

Yamada, K.

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, “4.7 GB phase change optical disc with in-groove recording,” Jpn. J. Appl. Phys. 38, 1806–1810 (1999).
[CrossRef]

Yasuda, K.

K. Kurokawa, M. Naito, K. Yasuda, T. Kashiwagi, O. Kawakubo, “A 16.8GB double-decker phase change disc,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 197–199 (1999).

Zhou, G. F.

G. F. Zhou, B. A. J. Jacobs, “High performance media for phase change optical recording,” Jpn. J. Appl. Phys. 38, 1625–1628 (1999).
[CrossRef]

H. J. Borg, P. W. M. Blom, B. A. J. Jacobs, B. Tieke, A. E. Wilson, I. P. D. Ubbens, G. F. Zhou, “AgInSbTe materials for high-speed phase change recording,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 191–193 (1999).

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

G. F. Zhou, B. A. J. Jacobs, “High performance media for phase change optical recording,” Jpn. J. Appl. Phys. 38, 1625–1628 (1999).
[CrossRef]

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, “Completely erasable phase change optical disc: application of AgInSbTe mixed-phase system for rewritable CD,” Jpn. J. Appl. Phys. 32, 5241–5247 (1993).
[CrossRef]

X. S. Miao, T. C. Chong, Y. M. Huang, K. G. Lim, P. K. Tan, L. P. Shi, “Dependence of optical constants on film thickness of phase-change media,” Jpn. J. Appl. Phys. 38, 1638–1641 (1999).
[CrossRef]

N. Kato, Y. Takeda, T. Fukano, T. Motohiro, S. Kawai, H. Kuno, “Compositional dependence of optical constants and microstructures of GeSbTe thin films for Compact-Disc-Rewritable (CD-RW) readable with conventional CD-ROM drives,” Jpn. J. Appl. Phys. 38, 1707–1708 (1999).
[CrossRef]

M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, “4.7 GB phase change optical disc with in-groove recording,” Jpn. J. Appl. Phys. 38, 1806–1810 (1999).
[CrossRef]

Other

K. Kurokawa, M. Naito, K. Yasuda, T. Kashiwagi, O. Kawakubo, “A 16.8GB double-decker phase change disc,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 197–199 (1999).

H. J. Borg, P. W. M. Blom, B. A. J. Jacobs, B. Tieke, A. E. Wilson, I. P. D. Ubbens, G. F. Zhou, “AgInSbTe materials for high-speed phase change recording,” in Joint International Symposium on Optical Memory and Optical Data Storage 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 191–193 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of an ellipsometric system based on a variable retarder and a differential detection module. The beam emerging from the polarizer is collimated and linearly polarized along the X axis. The variable retarder’s axes are fixed at ±45° to the X, Z plane of incidence, whereas its phase shift is varied continuously from 0° to 360°. The light beam is focused on the sample through a low-N.A. lens, and the reflected beam is recollimated by an identical lens in the reflection path. The reflected beam is monitored by a differential detector consisting of a Wollaston prism (oriented at 45° to the plane of incidence) and two identical photodetectors. The sum of the detector signals S 1 + S 2 contains information about the sample reflectivities R p and R s (or transmissivities T p , T s ), and the normalized difference (S 1 - S 2)/(S 1 + S 2) yields the relative phase between the reflected (or transmitted) p- and s-polarized light.

Fig. 2
Fig. 2

Examples of multilayer stacks used in our measurements. (a) Single dielectric layer coated on a fused-silica substrate. (b) Four-layer stack (containing a GST alloy active layer) coated on a fused-silica substrate. In the configuration shown here the quadrilayer stack is of the front-surface-incidence type, meaning that the laser beam does not go through the substrate to reach the active (GST) layer.

Fig. 3
Fig. 3

Experimental and theoretical results obtained for the 13.6-nm-thick GST layer on a fused-silica substrate. The circles and rectangles mark the experimental data points, and the solid curves represent theoretical best fits to the measured data. The sample was immersed in a fluid that was index matched to the substrate, and (for this particular measurement) the laser beam was incident on the sample from the film side. The wavelength of the He–Ne laser used was λ = 633 nm, and the angle of incidence (depicted on the horizontal axis) ranged from 10° to 75°. (a) Reflectivity R p , R s and transmissivity T p , T s . (b) Peak-to-valley swing of the differential signal (S 1 - S 2) measured in both reflection and transmission.

Fig. 4
Fig. 4

Same as Fig. 3 but for a two-layer stack consisting of a ZnS-SiO2 layer sandwiched between an AIST film and a fused-silica substrate.

Fig. 5
Fig. 5

Same as Fig. 3 but for a three-layer stack consisting of an amorphous GST layer sandwiched between two dielectric layers (measurement wavelength λ = 633 nm). The best-fitted parameters of this stack are the first dielectric layer (n = 2.1, t = 59.44 nm), amorphous GST (n + ik = 4.38 + i2.11, t = 11.56 nm), and the second dielectric layer (n = 2.09, t = 29.92 nm). The second dielectric layer is on top, whereas the first is in contact with the substrate.

Fig. 6
Fig. 6

Experimental and theoretical results obtained for a quadrilayer PC medium based on an AIST alloy (substrate/dielectric/AIST/dielectric/aluminum). Because of the opaque aluminum layer at the top, the laser beam (λ = 633 nm) is directed at the sample through its substrate. Only the reflectivities for p- and s-polarized light and the corresponding ellipsometric phase were measured; the aluminum layer is too thick to allow any appreciable amount of light through. The estimated optical constants and layer thicknesses are n 1 = 2.17, t 1 = 60.02 nm for the first dielectric layer; n 2 + ik 2 = 4.17 + i2.30, t 2 = 23.97 nm for the AIST layer; n 3 = 2.14, t 3 = 30.64 nm for the second dielectric layer; and n 4 + ik 4 = 1.56 + i6.87, t 4 = 137.36 nm for the aluminum layer.

Fig. 7
Fig. 7

Experimental and theoretical results of reflectivity and transmissivity for a trilayer GST-based medium (substrate/dielectric/GST/dielectric) for three different wavelengths: (a) λ = 632.8 nm, (b) λ = 514.5 nm, and (c) λ = 457.9 nm.

Fig. 8
Fig. 8

Similar to Fig. 7, but showing experimental and theoretical results of the peak-to-valley swing of the differential signal (S 1 - S 2) at three different wavelengths. From this data one can readily extract the ellipsometric phase difference between the p and s components of polarization upon reflection or transmission.

Fig. 9
Fig. 9

Measured wavelength dependence of the optical constants for the first set of samples: (a) dielectric layer, (b) amorphous and crystalline GST layers, and (c) aluminum layer.

Fig. 10
Fig. 10

Measured wavelength dependence of the optical constants of the second set of samples: (a) dielectric layer, (b) amorphous GST and AIST layers, and (c) aluminum layer.

Tables (3)

Tables Icon

Table 1 Measured Values of n, k, and Layer Thicknesses for the First Set of Samples

Tables Icon

Table 2 Measured Values of n, k, and Layer Thicknesses for the Second Set of Samples

Tables Icon

Table 3 Measured Average Values of the Optical Constants (n, k) and Their Standard Deviations σ n and σ k

Metrics