Abstract

We describe a method to estimate the heat capacity of the substrate, the dielectric layer, and the phase-change layer of phase-change optical recording media as well as the thermal conductivity of the phase-change layer in its crystalline state. Measurements were carried out on spinning disks with the beam of light focused and locked onto the groove track. The method relies on the identification of the solid-to-liquid phase transition that occurs in the phase-change layer and takes advantage of the dependence of thermal diffusion on track velocity and irradiation time.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
    [CrossRef]
  2. N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. Suppl. 26-4, 61–66 (1987).
  3. T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).
  4. C. Peng, M. Mansuripur, “Measurement of the thermal conductivity of the erasable phase-change optical recording media,” Appl. Opt. 39, 2347–2352 (2000).
    [CrossRef]
  5. B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G. F. Zhou, I. P. D. Ubbens, “High data-rate phase-change media for the digital video recording system,” in Joint International Symposium on Optical Memory and Optical Data Storage, 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 200–202 (1999).
  6. I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements,” J. Appl. Phys. 87, 4130–4134 (2000).
    [CrossRef]
  7. S. L. Lai, G. Ramanath, L. H. Allen, P. Infante, “Heat capacity measurements of Sn nanostructures using a thin film differential scanning calorimeter with 0.2 nJ sensitivity,” Appl. Phys. Lett. 70, 43–45 (1997).
    [CrossRef]
  8. D. DeVecchio, D. Russell, P. Taborek, “Measurement of thermal diffusivity of small, high conductivity sample using a phase sensitive technique,” Rev. Sci. Instrum. 66, 3601–3605 (1995).
    [CrossRef]
  9. S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999).
    [CrossRef]
  10. R. W. Powell, “Thermal conductivity determinations by thermal comparator methods,” in Thermal Conductivity, R. T. Tye, ed. (Academic, London, 1969), Part 2, pp. 275–338.
  11. C. H. Henager, W. T. Dawlewicz, “Thermal conductivities of thin, sputtered optical films,” Appl. Opt. 32, 91–101 (1993).
    [CrossRef] [PubMed]
  12. N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988).
    [CrossRef]
  13. Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. Phys. 33, 33–42 (1995).
    [CrossRef]
  14. E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
    [CrossRef]
  15. Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
    [CrossRef]
  16. R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
    [CrossRef]
  17. S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
    [CrossRef]
  18. C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
    [CrossRef]
  19. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
    [CrossRef]
  20. C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
    [CrossRef]
  21. M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296–9303 (1997).
    [CrossRef]
  22. C. Peng, M. Mansuripur, “Sources of noise in erasable optical disk data storage,” Appl. Opt. 37, 921–928 (1998).
    [CrossRef]
  23. M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982).
    [CrossRef] [PubMed]
  24. E. K. Kim, S. I. Kwun, S. M. Lee, H. Seo, J. G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface,” Appl. Phys. Lett. 76, 3864–3866 (2000).
    [CrossRef]
  25. S. M. Lee, D. G. Cahill, “Heat transport in thin dielectric films,” J. Appl. Phys. 81, 2590–2595 (2000).
    [CrossRef]

2000

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements,” J. Appl. Phys. 87, 4130–4134 (2000).
[CrossRef]

C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
[CrossRef]

E. K. Kim, S. I. Kwun, S. M. Lee, H. Seo, J. G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface,” Appl. Phys. Lett. 76, 3864–3866 (2000).
[CrossRef]

S. M. Lee, D. G. Cahill, “Heat transport in thin dielectric films,” J. Appl. Phys. 81, 2590–2595 (2000).
[CrossRef]

C. Peng, M. Mansuripur, “Measurement of the thermal conductivity of the erasable phase-change optical recording media,” Appl. Opt. 39, 2347–2352 (2000).
[CrossRef]

1999

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999).
[CrossRef]

1998

1997

M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296–9303 (1997).
[CrossRef]

S. L. Lai, G. Ramanath, L. H. Allen, P. Infante, “Heat capacity measurements of Sn nanostructures using a thin film differential scanning calorimeter with 0.2 nJ sensitivity,” Appl. Phys. Lett. 70, 43–45 (1997).
[CrossRef]

S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

1996

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

1995

D. DeVecchio, D. Russell, P. Taborek, “Measurement of thermal diffusivity of small, high conductivity sample using a phase sensitive technique,” Rev. Sci. Instrum. 66, 3601–3605 (1995).
[CrossRef]

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. Phys. 33, 33–42 (1995).
[CrossRef]

1993

1990

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

1989

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

1988

N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988).
[CrossRef]

1987

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. Suppl. 26-4, 61–66 (1987).

1986

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

1982

1971

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Agari, Y.

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. Phys. 33, 33–42 (1995).
[CrossRef]

Akahira, N.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. Suppl. 26-4, 61–66 (1987).

Akiyama, T.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Allen, L. H.

S. L. Lai, G. Ramanath, L. H. Allen, P. Infante, “Heat capacity measurements of Sn nanostructures using a thin film differential scanning calorimeter with 0.2 nJ sensitivity,” Appl. Phys. Lett. 70, 43–45 (1997).
[CrossRef]

Bartlett, C.

Bates, K.

Bletscher, W.

Cahill, D. G.

S. M. Lee, D. G. Cahill, “Heat transport in thin dielectric films,” J. Appl. Phys. 81, 2590–2595 (2000).
[CrossRef]

Capinski, W. S.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Cardona, M.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Cheng, L.

Chung, C. S.

Connell, G. A. N.

Dawlewicz, W. T.

de Nuerville, J.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Dekker, M.

B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G. F. Zhou, I. P. D. Ubbens, “High data-rate phase-change media for the digital video recording system,” in Joint International Symposium on Optical Memory and Optical Data Storage, 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 200–202 (1999).

DeVecchio, D.

D. DeVecchio, D. Russell, P. Taborek, “Measurement of thermal diffusivity of small, high conductivity sample using a phase sensitive technique,” Rev. Sci. Instrum. 66, 3601–3605 (1995).
[CrossRef]

Eckhardt, P.

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

Eesley, G. L.

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

Erwin, J. K.

Feinleib, J.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Forster, R.

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

Franz, P.

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements,” J. Appl. Phys. 87, 4130–4134 (2000).
[CrossRef]

Friedrich, I.

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements,” J. Appl. Phys. 87, 4130–4134 (2000).
[CrossRef]

Friedrich, K.

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

Furukawa, S.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Gerber, R. E.

Gmelin, E.

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

Goodman, J. W.

Goodman, T. D.

Govorkov, S.

S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Henager, C. H.

Indermuehle, S. W.

S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999).
[CrossRef]

Infante, P.

S. L. Lai, G. Ramanath, L. H. Allen, P. Infante, “Heat capacity measurements of Sn nanostructures using a thin film differential scanning calorimeter with 0.2 nJ sensitivity,” Appl. Phys. Lett. 70, 43–45 (1997).
[CrossRef]

Inoue, K.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Katzer, D. S.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Kim, E. K.

E. K. Kim, S. I. Kwun, S. M. Lee, H. Seo, J. G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface,” Appl. Phys. Lett. 76, 3864–3866 (2000).
[CrossRef]

Kim, S. G.

Kim, T.

Kiyotsukuri, T.

N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988).
[CrossRef]

Kozlowski, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Kuo, P. K.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Kwun, S. I.

E. K. Kim, S. I. Kwun, S. M. Lee, H. Seo, J. G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface,” Appl. Phys. Lett. 76, 3864–3866 (2000).
[CrossRef]

Lai, S. L.

S. L. Lai, G. Ramanath, L. H. Allen, P. Infante, “Heat capacity measurements of Sn nanostructures using a thin film differential scanning calorimeter with 0.2 nJ sensitivity,” Appl. Phys. Lett. 70, 43–45 (1997).
[CrossRef]

Lee, S. K.

Lee, S. M.

S. M. Lee, D. G. Cahill, “Heat transport in thin dielectric films,” J. Appl. Phys. 81, 2590–2595 (2000).
[CrossRef]

E. K. Kim, S. I. Kwun, S. M. Lee, H. Seo, J. G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface,” Appl. Phys. Lett. 76, 3864–3866 (2000).
[CrossRef]

Lu, Y. S.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Mansuripur, M.

Maris, H. J.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Moss, S. C.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Nagai, S.

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. Phys. 33, 33–42 (1995).
[CrossRef]

Nagata, K.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. Suppl. 26-4, 61–66 (1987).

Nakamura, S.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Nishiuchi, K.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. Suppl. 26-4, 61–66 (1987).

Njoroge, W.

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements,” J. Appl. Phys. 87, 4130–4134 (2000).
[CrossRef]

Ohno, E.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. Suppl. 26-4, 61–66 (1987).

Ohta, T.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Ovshinsky, S. R.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Paddock, C. A.

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

Peng, C.

Peterson, R. B.

S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999).
[CrossRef]

Pfeffer, N.

B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G. F. Zhou, I. P. D. Ubbens, “High data-rate phase-change media for the digital video recording system,” in Joint International Symposium on Optical Memory and Optical Data Storage, 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 200–202 (1999).

Ploog, K.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Powell, R. W.

R. W. Powell, “Thermal conductivity determinations by thermal comparator methods,” in Thermal Conductivity, R. T. Tye, ed. (Academic, London, 1969), Part 2, pp. 275–338.

Ramanath, G.

S. L. Lai, G. Ramanath, L. H. Allen, P. Infante, “Heat capacity measurements of Sn nanostructures using a thin film differential scanning calorimeter with 0.2 nJ sensitivity,” Appl. Phys. Lett. 70, 43–45 (1997).
[CrossRef]

Ruderman, W.

S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Ruf, T.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Russell, D.

D. DeVecchio, D. Russell, P. Taborek, “Measurement of thermal diffusivity of small, high conductivity sample using a phase sensitive technique,” Rev. Sci. Instrum. 66, 3601–3605 (1995).
[CrossRef]

Seo, H.

E. K. Kim, S. I. Kwun, S. M. Lee, H. Seo, J. G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface,” Appl. Phys. Lett. 76, 3864–3866 (2000).
[CrossRef]

Stolz, C.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Taborek, P.

D. DeVecchio, D. Russell, P. Taborek, “Measurement of thermal diffusivity of small, high conductivity sample using a phase sensitive technique,” Rev. Sci. Instrum. 66, 3601–3605 (1995).
[CrossRef]

Takeo, M.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. Suppl. 26-4, 61–66 (1987).

Thomsen, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Tieke, B.

B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G. F. Zhou, I. P. D. Ubbens, “High data-rate phase-change media for the digital video recording system,” in Joint International Symposium on Optical Memory and Optical Data Storage, 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 200–202 (1999).

Tsutsumi, N.

N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988).
[CrossRef]

Ubbens, I. P. D.

B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G. F. Zhou, I. P. D. Ubbens, “High data-rate phase-change media for the digital video recording system,” in Joint International Symposium on Optical Memory and Optical Data Storage, 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 200–202 (1999).

Uchida, M.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

van Woudenberg, R.

B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G. F. Zhou, I. P. D. Ubbens, “High data-rate phase-change media for the digital video recording system,” in Joint International Symposium on Optical Memory and Optical Data Storage, 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 200–202 (1999).

Veda, A.

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. Phys. 33, 33–42 (1995).
[CrossRef]

Walther, H. G.

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

Weidenhof, V.

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements,” J. Appl. Phys. 87, 4130–4134 (2000).
[CrossRef]

Welsch, E.

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

Wu, Z. L.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Wuttig, M.

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements,” J. Appl. Phys. 87, 4130–4134 (2000).
[CrossRef]

Yamada, N.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. Suppl. 26-4, 61–66 (1987).

Yoon, J. G.

E. K. Kim, S. I. Kwun, S. M. Lee, H. Seo, J. G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface,” Appl. Phys. Lett. 76, 3864–3866 (2000).
[CrossRef]

Yoshioka, K.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Zhou, G. F.

B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G. F. Zhou, I. P. D. Ubbens, “High data-rate phase-change media for the digital video recording system,” in Joint International Symposium on Optical Memory and Optical Data Storage, 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 200–202 (1999).

Appl. Opt.

Appl. Phys. Lett.

E. K. Kim, S. I. Kwun, S. M. Lee, H. Seo, J. G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface,” Appl. Phys. Lett. 76, 3864–3866 (2000).
[CrossRef]

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

S. L. Lai, G. Ramanath, L. H. Allen, P. Infante, “Heat capacity measurements of Sn nanostructures using a thin film differential scanning calorimeter with 0.2 nJ sensitivity,” Appl. Phys. Lett. 70, 43–45 (1997).
[CrossRef]

N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988).
[CrossRef]

J. Appl. Phys.

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

S. M. Lee, D. G. Cahill, “Heat transport in thin dielectric films,” J. Appl. Phys. 81, 2590–2595 (2000).
[CrossRef]

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements,” J. Appl. Phys. 87, 4130–4134 (2000).
[CrossRef]

C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
[CrossRef]

J. Polym. Sci. Part B Polym. Phys.

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. Phys. 33, 33–42 (1995).
[CrossRef]

Jpn. J. Appl. Phys. Suppl.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. Suppl. 26-4, 61–66 (1987).

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. Suppl. 28-3, 123–128 (1989).

Phys. Rev. B

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Rev. Sci. Instrum.

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

D. DeVecchio, D. Russell, P. Taborek, “Measurement of thermal diffusivity of small, high conductivity sample using a phase sensitive technique,” Rev. Sci. Instrum. 66, 3601–3605 (1995).
[CrossRef]

Trans. ASME

S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999).
[CrossRef]

Other

R. W. Powell, “Thermal conductivity determinations by thermal comparator methods,” in Thermal Conductivity, R. T. Tye, ed. (Academic, London, 1969), Part 2, pp. 275–338.

B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G. F. Zhou, I. P. D. Ubbens, “High data-rate phase-change media for the digital video recording system,” in Joint International Symposium on Optical Memory and Optical Data Storage, 1999, S. Kubota, R. Katayama, D. G. Stinson, eds., Proc. SPIE3864, 200–202 (1999).

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram showing a quadrilayer film deposited on a grooved polycarbonate substrate. A circularly polarized Gaussian beam of light is brought to focus onto the PC layer through the substrate by an objective lens. In the X,Y,Z Cartesian coordinate system, the groove profile is trapezoidal in the X,Y plane and invariant in the Z direction.

Fig. 2
Fig. 2

Calculated cross-track temperature distribution in the middle of the PC layer when the focused beam is centered on a land or a groove track of the grooved disk or on a flat sample. The incident beam is circularly polarized and Gaussian, having its 1/e amplitude radius at the aperture of the lens. The laser spot was moving at 5 m/s along the track (Z axis) from z = 0. Starting at time t = 0, the stack was assumed to be illuminated by a focused beam, having 0.3-mW optical power. At t = 200 ns, the laser power was increased to 5 mW. After 50 ns, the laser power drops back to 0.3 mW. The three curves correspond to t = 250 ns at z = 1200 nm. The simulated stack has the following layer structure: polycarbonate substrate, ZnS-SiO2 (120 nm), GST (25 nm), and ZnS-SiO2 (110 nm). In the simulation it is assumed that the complex refractive index n + i k = 1.58 + i0 for the substrate, 2.1 + i0 for ZnS-SiO2, and 4.6 + i4.2 for GST. (The given values of refractive indices for various materials were measured experimentally.) The assumed heat capacity C and thermal conductivity K are (C, K) = (1.7, 0.0023) for the substrate, (2.0, 0.006) for ZnS-SiO2, and (1.285, 0.008) for GST. The numerical aperture of the focusing lens is 0.6 and the light wavelength λ = 660 nm.

Fig. 3
Fig. 3

Diagram of the dynamic tester used in our experiments. QWP, quarter-wave plate; HWP, half-wave plate.

Fig. 4
Fig. 4

Variations of signal at the data detector as a function of time during the irradiation of sample S 2 by a focused beam at several laser power levels and spinning velocities V. The solid curves represent the scaled reference signal, and the circles represent the desired signal. (a) V = 1.69 m/s, pulse width W = 50 ns, the period is 600 ns; (b) V = 13.8 m/s, W = 60 ns, the period is 480 ns; (c) V = 3.39 m/s, W = 150 ns, the period is 900 ns. The arrow in each graph indicates the onset of melting in the GST layer of the sample at the nominal laser power P w = (a) 6.9 mW, (b) 9.2 mW, and (c) 4.2 mW.

Fig. 5
Fig. 5

Variations of signal at the data detector as a function of time during the irradiation of sample S 4 by a focused beam at several laser power levels and spinning velocities V. The solid curves represent the scaled reference signal, and the circles represent the desired signal. (a) V = 1.69 m/s, W = 50 ns, the period is 600 ns. (b) V = 13.8 m/s, W = 60 ns, the period is 480 ns. (c) V = 3.39 m/s, W = 150 ns, the period is 900 ns. The arrow in each graph indicates the onset of melting in the GST layer of the sample at the nominal laser power P w = (a) 8.9 mW, (b) 9.5 mW, and (c) 7.0 mW.

Fig. 6
Fig. 6

Profile of the laser-pulse power at the sample S 2. Nominal pulse width W = (a) 60 ns, (b) 150 ns.

Fig. 7
Fig. 7

Variation of temperature ΔT/ T of sample (a) S 1 and (b) S 4 as a function of laser irradiation time when C SUB, C ZnS-SiO2 , and C GST are varied by 10% from their bulk values and K GST is varied by 10% from its assumed value of 0.008. T is the maximum temperature computed at the center of the hot spot in the GST layer of each sample.

Fig. 8
Fig. 8

Plot of K GST versus C ZnS-SiO2 based on the experimental data from samples S 1 and S 4. For S 1, V = 13.8 m/s, t 0 = 25 ns. For S 4, V = 13.8 m/s, t 0 = 26.8 ns in one case, and V = 3.39 m/s, t 0 = 71 ns in another case.

Fig. 9
Fig. 9

Plot of C SUB versus C ZnS-SiO2 for sample S 1. The measurements were done with the iris fully open (full aperture) or partially open (limited aperture). In the case of full aperture, the laser beam was not blocked by the iris; in the case of limited aperture, the beam diameter was reduced by a factor of 2.

Fig. 10
Fig. 10

Variation of temperature ΔT/ T for samples (a) S 2 and (b) S 3 as a function of laser irradiation time when C GST is varied by 10% from its bulk value and K GST is varied by 10% from its assumed value of 0.02. In these simulations the sample is assumed to be stationary.

Fig. 11
Fig. 11

Plots of K GST versus C GST based on the experimental data from sample S 2. V = 13.8 m/s, t 0 = 24.5 ns; V = 1.69 m/s, t 0 = 25.2 ns; and V = 3.39 m/s, t 0 = 91.5 ns.

Fig. 12
Fig. 12

Plots of K GST versus C GST based on the experimental data from sample S 3. V = 13.8 m/s, t 0 = 30 ns in one case and V = 3.39 m/s, t 0 = 28 ns in another case.

Tables (3)

Tables Icon

Table 1 Layer Structure of Samples S 1S 4

Tables Icon

Table 2 Estimated Values of Heat Capacity C for PC Recording Media

Tables Icon

Table 3 Estimated Values of the c-GST Layer’s Thermal Conductivity K GST

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K2T+g=C Tt.

Metrics