Abstract

The reflecting grating interferometer (RGI) is a folded and reversal wave-front interferometer sensitive only to asymmetrical aberrations such as third-order coma. The RGI can isolate and evaluate coma both in nearly collimated and in noncollimated beams. We propose a RGI with a different optical configuration that includes a lateral shearing in addition to folding and reversal operations. With lateral shear, the RGI also becomes sensitive to other terms of third-order aberrations such as defocusing, astigmatism, and spherical aberration. Optical path difference equations for interpreting interferograms and numerical simulations are presented to show how the interferometer works in the shearing configuration. Its potential applications are described and discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Malacara, ed., Optical Shop Testing, 2nd ed. (Wiley Interscience, New York, 1992), Chaps. 2, 4, 5, and 9.
  2. J. D. Briers, “Optical testing: a review and tutorial for optical engineers,” Opt. Lasers Eng. 32, 111–138 (1999).
    [CrossRef]
  3. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
    [CrossRef]
  4. P. E. Murphy, T. G. Brown, D. T. Moore, “Interference imaging for aspheric surface testing,” Appl. Opt. 39, 2122–2129 (2000).
    [CrossRef]
  5. L. Erdmann, R. Kowarschik, “Testing of refractive silicon microlenses by use of a lateral shearing interferometer in transmission,” App. Opt. 37, 676–682 (1998).
    [CrossRef]
  6. H. Nomura, T. Sato, “Techniques for measuring aberrations in lenses used in photolithography with printed patterns,” Appl. Opt. 38, 2800–2807 (1999).
    [CrossRef]
  7. P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252–7263 (1999).
    [CrossRef]
  8. R. S. Sirohi, T. Eiju, T. H. Barnes, “Multiple-beam lateral shear interferometry for optical testing,” Appl. Opt. 34, 2864–2870 (1995).
    [CrossRef] [PubMed]
  9. K. Matsuda, T. H. Barnes, B. F. Oreb, C. J. R. Sheppard, “Focal-length measurement by multiple-beam shearing interferometry,” App. Opt. 38, 3542–3548 (1999).
    [CrossRef]
  10. G. W. R. Leibbrandt, G. Harbers, P. J. Kunst, “Wave-front analysis with high accuracy by use of a double-grating lateral shearing interferometer,” Appl. Opt. 35, 6151–6161 (1996).
    [CrossRef] [PubMed]
  11. H. Schreiber, J. Schwider, “Lateral shearing interferometer based on two Ronchi phase gratings in series,” App. Opt. 36, 5321–5324 (1997).
    [CrossRef]
  12. G. Paez, M. Strojnik, G. G. Torales, “Vectorial shearing interferometer,” App. Opt. 39, 5172–5178 (2000).
    [CrossRef]
  13. S. DeNicola, P. Ferraro, A. Finizio, G. Pierattini, “Reflective grating interferometer: a folded reversal wave-front interferometer,” Appl. Opt. 38, 4845–4849 (1999).
    [CrossRef]
  14. P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, “Reflective grating interferometer in noncollimated configuration,” App. Opt. 39, 2116–2121 (2000).
    [CrossRef]
  15. S. DeNicola, P. Ferraro, “Fringe projection based on a moiré method for measuring aberration of axially symmetric optics,” Opt. Commun. 185, 285–293 (2000).
    [CrossRef]
  16. M. Servin, D. Malacara, J. L. Marroquin, “Wave-front recovery from two orthogonal sheared interferograms,” Appl. Opt. 35, 4343–4348 (1996).
    [CrossRef] [PubMed]
  17. S. Loheide, “Innovative evaluation method for shearing interferograms,” Opt. Comm. 141, 254–258 (1997).
    [CrossRef]
  18. C. Elster, I. Weingärtner, “Solution to the shearing problem,” Appl. Opt. 38, 5024–5031 (1999).
    [CrossRef]
  19. R. Kingslake, “The interferometer pattern due to the primary aberrations,” Trans. Opt. Soc. London 27, 94–105 (1926).
    [CrossRef]

2000 (5)

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

P. E. Murphy, T. G. Brown, D. T. Moore, “Interference imaging for aspheric surface testing,” Appl. Opt. 39, 2122–2129 (2000).
[CrossRef]

G. Paez, M. Strojnik, G. G. Torales, “Vectorial shearing interferometer,” App. Opt. 39, 5172–5178 (2000).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, “Reflective grating interferometer in noncollimated configuration,” App. Opt. 39, 2116–2121 (2000).
[CrossRef]

S. DeNicola, P. Ferraro, “Fringe projection based on a moiré method for measuring aberration of axially symmetric optics,” Opt. Commun. 185, 285–293 (2000).
[CrossRef]

1999 (6)

1998 (1)

L. Erdmann, R. Kowarschik, “Testing of refractive silicon microlenses by use of a lateral shearing interferometer in transmission,” App. Opt. 37, 676–682 (1998).
[CrossRef]

1997 (2)

H. Schreiber, J. Schwider, “Lateral shearing interferometer based on two Ronchi phase gratings in series,” App. Opt. 36, 5321–5324 (1997).
[CrossRef]

S. Loheide, “Innovative evaluation method for shearing interferograms,” Opt. Comm. 141, 254–258 (1997).
[CrossRef]

1996 (2)

1995 (1)

1926 (1)

R. Kingslake, “The interferometer pattern due to the primary aberrations,” Trans. Opt. Soc. London 27, 94–105 (1926).
[CrossRef]

Attwood, D.

Barnes, T. H.

K. Matsuda, T. H. Barnes, B. F. Oreb, C. J. R. Sheppard, “Focal-length measurement by multiple-beam shearing interferometry,” App. Opt. 38, 3542–3548 (1999).
[CrossRef]

R. S. Sirohi, T. Eiju, T. H. Barnes, “Multiple-beam lateral shear interferometry for optical testing,” Appl. Opt. 34, 2864–2870 (1995).
[CrossRef] [PubMed]

Bliss, E. S.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Bokor, J.

Briers, J. D.

J. D. Briers, “Optical testing: a review and tutorial for optical engineers,” Opt. Lasers Eng. 32, 111–138 (1999).
[CrossRef]

Brown, T. G.

Chang, C.

Dailey, M. J.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

De Nicola, S.

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, “Reflective grating interferometer in noncollimated configuration,” App. Opt. 39, 2116–2121 (2000).
[CrossRef]

DeNicola, S.

S. DeNicola, P. Ferraro, “Fringe projection based on a moiré method for measuring aberration of axially symmetric optics,” Opt. Commun. 185, 285–293 (2000).
[CrossRef]

S. DeNicola, P. Ferraro, A. Finizio, G. Pierattini, “Reflective grating interferometer: a folded reversal wave-front interferometer,” Appl. Opt. 38, 4845–4849 (1999).
[CrossRef]

Eiju, T.

Elster, C.

Erdmann, L.

L. Erdmann, R. Kowarschik, “Testing of refractive silicon microlenses by use of a lateral shearing interferometer in transmission,” App. Opt. 37, 676–682 (1998).
[CrossRef]

Feldman, M.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Ferraro, P.

S. DeNicola, P. Ferraro, “Fringe projection based on a moiré method for measuring aberration of axially symmetric optics,” Opt. Commun. 185, 285–293 (2000).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, “Reflective grating interferometer in noncollimated configuration,” App. Opt. 39, 2116–2121 (2000).
[CrossRef]

S. DeNicola, P. Ferraro, A. Finizio, G. Pierattini, “Reflective grating interferometer: a folded reversal wave-front interferometer,” Appl. Opt. 38, 4845–4849 (1999).
[CrossRef]

Finizio, A.

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, “Reflective grating interferometer in noncollimated configuration,” App. Opt. 39, 2116–2121 (2000).
[CrossRef]

S. DeNicola, P. Ferraro, A. Finizio, G. Pierattini, “Reflective grating interferometer: a folded reversal wave-front interferometer,” Appl. Opt. 38, 4845–4849 (1999).
[CrossRef]

Goldberg, K. A.

Grey, A. A.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Harbers, G.

Holdener, F. R.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Kingslake, R.

R. Kingslake, “The interferometer pattern due to the primary aberrations,” Trans. Opt. Soc. London 27, 94–105 (1926).
[CrossRef]

Koch, J. A.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Kowarschik, R.

L. Erdmann, R. Kowarschik, “Testing of refractive silicon microlenses by use of a lateral shearing interferometer in transmission,” App. Opt. 37, 676–682 (1998).
[CrossRef]

Kunst, P. J.

Lee, S. H.

Leibbrandt, G. W. R.

Loheide, S.

S. Loheide, “Innovative evaluation method for shearing interferograms,” Opt. Comm. 141, 254–258 (1997).
[CrossRef]

Malacara, D.

Marroquin, J. L.

Matsuda, K.

K. Matsuda, T. H. Barnes, B. F. Oreb, C. J. R. Sheppard, “Focal-length measurement by multiple-beam shearing interferometry,” App. Opt. 38, 3542–3548 (1999).
[CrossRef]

Moore, D. T.

Murphy, P. E.

Naulleau, P. P.

Nomura, H.

Oreb, B. F.

K. Matsuda, T. H. Barnes, B. F. Oreb, C. J. R. Sheppard, “Focal-length measurement by multiple-beam shearing interferometry,” App. Opt. 38, 3542–3548 (1999).
[CrossRef]

Paez, G.

G. Paez, M. Strojnik, G. G. Torales, “Vectorial shearing interferometer,” App. Opt. 39, 5172–5178 (2000).
[CrossRef]

Pierattini, G.

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, “Reflective grating interferometer in noncollimated configuration,” App. Opt. 39, 2116–2121 (2000).
[CrossRef]

S. DeNicola, P. Ferraro, A. Finizio, G. Pierattini, “Reflective grating interferometer: a folded reversal wave-front interferometer,” Appl. Opt. 38, 4845–4849 (1999).
[CrossRef]

Presta, R. W.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Sacks, R. A.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Salmon, J. T.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Sato, T.

Schreiber, H.

H. Schreiber, J. Schwider, “Lateral shearing interferometer based on two Ronchi phase gratings in series,” App. Opt. 36, 5321–5324 (1997).
[CrossRef]

Schwider, J.

H. Schreiber, J. Schwider, “Lateral shearing interferometer based on two Ronchi phase gratings in series,” App. Opt. 36, 5321–5324 (1997).
[CrossRef]

Seppala, L. G.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Servin, M.

Sheppard, C. J. R.

K. Matsuda, T. H. Barnes, B. F. Oreb, C. J. R. Sheppard, “Focal-length measurement by multiple-beam shearing interferometry,” App. Opt. 38, 3542–3548 (1999).
[CrossRef]

Sirohi, R. S.

Strojnik, M.

G. Paez, M. Strojnik, G. G. Torales, “Vectorial shearing interferometer,” App. Opt. 39, 5172–5178 (2000).
[CrossRef]

Toeppen, J. S.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Torales, G. G.

G. Paez, M. Strojnik, G. G. Torales, “Vectorial shearing interferometer,” App. Opt. 39, 5172–5178 (2000).
[CrossRef]

Van Atta, L.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Van Wonterghem, B. M.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Weingärtner, I.

Whistler, W. T.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Winters, S. E.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Woods, B. W.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

Zacharias, R. A.

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

App. Opt. (6)

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” App. Opt. 39, 4540–4546 (2000).
[CrossRef]

L. Erdmann, R. Kowarschik, “Testing of refractive silicon microlenses by use of a lateral shearing interferometer in transmission,” App. Opt. 37, 676–682 (1998).
[CrossRef]

K. Matsuda, T. H. Barnes, B. F. Oreb, C. J. R. Sheppard, “Focal-length measurement by multiple-beam shearing interferometry,” App. Opt. 38, 3542–3548 (1999).
[CrossRef]

H. Schreiber, J. Schwider, “Lateral shearing interferometer based on two Ronchi phase gratings in series,” App. Opt. 36, 5321–5324 (1997).
[CrossRef]

G. Paez, M. Strojnik, G. G. Torales, “Vectorial shearing interferometer,” App. Opt. 39, 5172–5178 (2000).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, “Reflective grating interferometer in noncollimated configuration,” App. Opt. 39, 2116–2121 (2000).
[CrossRef]

Appl. Opt. (8)

Opt. Comm. (1)

S. Loheide, “Innovative evaluation method for shearing interferograms,” Opt. Comm. 141, 254–258 (1997).
[CrossRef]

Opt. Commun. (1)

S. DeNicola, P. Ferraro, “Fringe projection based on a moiré method for measuring aberration of axially symmetric optics,” Opt. Commun. 185, 285–293 (2000).
[CrossRef]

Opt. Lasers Eng. (1)

J. D. Briers, “Optical testing: a review and tutorial for optical engineers,” Opt. Lasers Eng. 32, 111–138 (1999).
[CrossRef]

Trans. Opt. Soc. London (1)

R. Kingslake, “The interferometer pattern due to the primary aberrations,” Trans. Opt. Soc. London 27, 94–105 (1926).
[CrossRef]

Other (1)

D. Malacara, ed., Optical Shop Testing, 2nd ed. (Wiley Interscience, New York, 1992), Chaps. 2, 4, 5, and 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical setup of RGI. G, diffraction grating; M, mirror; L, tested lens; O.A., optical axis; OF, optical fiber; DS, diffusing screen.

Fig. 2
Fig. 2

Anamorphism introduced by the diffraction grating G; M, mirror; S, lateral displacement; S′, effective reversal shear.

Fig. 3
Fig. 3

Reversal sheared experimental interferograms outside the focus (d > f, R 1 = -9500 mm) with different values of shear s.

Fig. 4
Fig. 4

Reversal sheared interferograms inside the focus (d < f; R 2 = 10,500 mm) with different values of shear s.

Fig. 5
Fig. 5

Reversal sheared interferograms in focus (d = f; R = ∞) with different values of shear s.

Fig. 6
Fig. 6

Reversal sheared interferograms in focus (d = f; R = ∞) with different values of shear s but with large coma.

Fig. 7
Fig. 7

Simulated interferograms with different values of shear s but with large coma, reproducing the real interferogram of Fig. 5.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sinα+sinβ=λν,
Wx, y=Ax2+y22+Byx2+y2+Cx2+3y2+Dx2+y2,
W1x, y=Ax2+y22+Byx2+y2+Cx2+3y2+Dx2+y2,
W2x, 2s-y=Ax2+2s-y22+B2s-y×x2+2s-y2+Cx2+32s-y2+Dx2+2s-y2.
OPDx, y=W1x, y-W2x, 2s-y,
OPDx, y=4 cos2α3C+Dsy-2Bs cos αx2+3y2 cos2α-2 cos αB-4As cos α×yx2+y2 cos2 α,

Metrics